12 resultados para THEORETICAL CHARACTERIZATION
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The interaction of formamide and the two transition states of its amide group rotation with one, two, or three water molecules was studied in vacuum. Great differences between the electronic structure of formamide in its most stable form and the electronic structure of the transition states were noticed. Intermolecular interactions were intense, especially in the cases where the solvent interacted with the amide and the carbonyl groups simultaneously. In the transition states, the interaction between the lone pair of nitrogen and the water molecule becomes important. With the aid of the natural bond orbitals, natural resonance theory, and electron localization function (ELF) analyses an increase in the resonance of planar formamide with the addition of successive water molecules was observed. Such observation suggests that the hydrogen bonds in the formamidewater complexes may have some covalent character. These results are also supported by the quantitative ELF analyses. (C) 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012
Resumo:
Air Force Office of Scientific Research (AFOSR)
Resumo:
The opto(electrical) properties and theoretical calculations of polyazomethine with vinylene and phenantridine moieties in the main chain were investigated in the present study. 2,5-Bis(hexyloxy)-1,4-bis[(2,5-bis(hexyloxy)-4-formyl-phenylenevinylene]benzene was polymerized in solution with 3,8-diamino-6-phenylphenanthridine (PAZ-PV-Ph). The temperatures of 5% weight loss (T-5%) of the polyazomethine was observed at 356 degrees C in nitrogen. Electrochemical properties of thin film of the polymer were studied by differential pulse voltammetry. The HOMO level of the PAZ-PV-Ph was at -4.97 eV. The energy band gap (E-g) was detected of approximately similar to 1.9 eV. Energy band gap (E-gopt) was additionally calculated from absorption spectrum and absorption coefficient alpha. The absorption UV-vis spectra of polyazomethine recorded in solution showed a blue shift in comparison with the solid state. HOMO-LUMO levels and E-g were additionally calculated theoretically by density functional theory and molecular simulations of PAZ-PV-Ph are presented. Current density-voltage (J-U) measurements were performed on ITO/PAZ-PV-Ph/Al, ITO/TiO2/PAZ-PV-Ph/Al and ITO/PEDOT/PAZ-PV-Ph:TiO2/Al devices in the dark and during irradiation with light (under illumination of 1000 W m(-2)). The polymer was tested using AFM technique and roughness (R-a, R-ms) along with skew and kurtosis are presented.
Resumo:
All doublet and quartet electronic states correlating with the first dissociation channel of SeCl and some Rydberg states are investigated theoretically at the CASSCF/MRCI level of theory using extended basis sets, including the contribution of spin-orbit effects. The similarity of the potential energy curves with those of SeF suggests that spectroscopic constants for the ground (X (2)Pi) and the first excited quartet (a(4)Sigma) of SeCl could also be determined via an emission resulting from the reaction of selenium with atomic chlorine. The coupling constant of the ground state at R-e is estimated as -1610 cm (1). The potential energy curves calculated and the derived spectroscopic constants do not support the interpretation and assignment of the scarce transitions recorded experimentally as due to (2)Pi-(2)Pi emissions. That the few observed lines might arise from transitions from the state b(4)Sigma(-)(1/2) to a very high vibrational level of the state a(4)Sigma(-)(1/2) is an open possibility, however, the number of vibrational states and the calculated Delta G(1/2) differ significantly from the reported ones. (C) 2012 Elsevier B. V. All rights reserved.
Resumo:
The complex formed by the tetracycline (TC) molecule with the Mg ion is able to prevent the replication of the genetic material in the bacterial ribosome, making an excellent antibiotic. In general, the absorption and emission spectra of TC are very sensitive to the host ions and the pH of the solvent that the set is immersed. However, the theoretical absorption spectrum available in the literature is scarce and limited to simple models that do not consider the fluctuations of the liquid. Our aim is to obtain the electronic absorption spectrum of TC and the complex Mg:TC in the ratio 1:1 and 2:1. Moreover, we analyze the changes in intensity and shifts of the bands in the systems listed. We performed the simulation using the classical Monte Carlo technique with the Lennard-Jones plus Coulomb potential applied to each atom of the both TC molecule and the Mg:TC complexes in water. The electronic absorption spectrum was obtained from the time-dependent density functional theory using different solvent models. In general, we obtained a good qualitative description of the spectra when compared with the experimental results. The Mg atom shifts the first band by 4 nm in our models, in excellent agreement to the experimental result of 4 nm. The second absorption band is found here to be useful for the characterization of the position where the ion attaches to the TC.
Resumo:
The title compound, (thiosaccharine disulfide), bis[1,10dioxide-2,3-dihidro-1,2-benzoisothiazol]disulfide, (tsac)2 has been synthesized and fully characterized by UV–Visible, IR, Raman, 1H and 13C NMR spectroscopy elemental analysis and structural X-ray crystallography. A DFT theoretical study has been performed and good agreement between experimental and theoretical values of structural parameters and vibration frequencies have been achieved.
Resumo:
Electronic states of a new molecular species, SiAs, correlating with the three lowest dissociation channels are characterized at a high-level of theory using the CASSCF/MRCI approach along with quintuple-xi quality basis sets. This characterization includes potential energy curves, vibrational energy levels, spectroscopic parameters, dipole and transition dipole moment functions, transition probabilities, and radiative lifetimes. For the ground state (X-2 Pi), an assessment of spin-orbit effects and the interaction with the close-lying A(2)Sigma(+) state is also reported. Similarities and differences with other isovalent species such as SiP and CAs are also discussed.
Resumo:
Dynamical properties for a beam light inside a sinusoidally corrugated waveguide are discussed in this paper. The beam is confined inside two-mirrors: one is flat and the other one is sinusoidally corrugated. The evolution of the system is described by the use of a two-dimensional and nonlinear mapping. The phase space of the system is of mixed type therefore exhibiting a large chaotic sea, periodic islands and invariant KAM curves. A careful discussion of the numerical method to solve the transcendental equations of the mapping is given. We characterize the probability of observing successive reflections of the light by the corrugated mirror and show that it is scaling invariant with respect to the amplitude of the corrugation. Average properties of the chaotic sea are also described by the use of scaling arguments.
Resumo:
A new molecular species, MgAs, is investigated theoretically for the first time at the CASSCF/MRCI level using quintuple-zeta quality basis sets. Potential energy curves for the lowest-lying electronic states are presented as well as the associated spectroscopic constants. Dipole and transition moment functions for selected states complement this characterization. Estimates of transition probabilities and radiative life-times for the most important transitions are also reported. The effect of spin-orbit interactions is clearly reflected on the potential energy curves. Comparisons with BeAs, BeN, and BeP are made where pertinent. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The lowest singlet and triplet states of AlP3, GaP3 and BP3 molecules with C-s, C-2v and C-3v symmetries were characterized using the B3LYP functional and the aug-cc-pVTZ and aug-cc-pVQZ correlated consistent basis sets. Geometrical parameters and vibrational frequencies were calculated and compared to existent experimental and theoretical data. Relative energies were obtained with single point CCSD(T) calculations using the aug-cc-pVTZ, aug-cc-pVQZ and aug-cc-pV5Z basis sets, and then extrapolating to the complete basis set (CBS) limit. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In this work we propose the use of experimental and theoretical reflectance anisotropy spectra (RAS) as a new tool to identify structural and dynamical aspects of the bilipid membrane and its various constituent molecules. The role of geometric details at the atomic level and macroscopic quantities, such as the membrane curvature and tilt for the different gel phases, in the theoretical RAS spectra (using Kohn-Sham density functional theory (KS-DFT)) are presented. Then the results are compared to the experimentally measured spectra taken from other techniques.
Resumo:
In this work we propose the use of experimental and theoretical reflectance anisotropy spectra (RAS) as a new tool to identify structural and dynamical aspects of the bilipid membrane and its various constituent molecules. The role of geometric details at the atomic level and macroscopic quantities, such as the membrane curvature and tilt for the different gel phases, in the theoretical RAS spectra (using Kohn-Sham density functional theory (KS-DFT)) are presented. Then the results are compared to the experimentally measured spectra taken from other techniques.