23 resultados para T. gondii-host cell interaction
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Aims: Inflammation may have an important role in the beginning and in the progress of cardiovascular diseases. Testosterone exerts important effects on vascular function, which is altered in arterial hypertension. Thus, the aim of this study was to evaluate the influence of endogenous testosterone on leukocyte behavior in post-capillary venules of the mesenteric bed of spontaneously hypertensive rats (SHR). Main methods: 18 week-old intact SHR, castrated SHR and normotensive rats (intact Wistar) were used. Blood pressure was measured by tail plethysmography and serum testosterone levels by ELISA. Leukocyte rolling, adhesion and migration were evaluated in vivo in situ by intravital microscopy. Key findings: Castration significantly reduced blood pressure and reversed the increased leukocyte rolling and adhesion observed in SHRs. Leukocyte counts and other hemodynamic parameters did not differ among groups. SHRs displayed increased protein expression of P-selectin and ICAM-1 in mesenteric venules when compared to intact Wistar. Castration of SHRs restored the protein expression of the cell adhesion molecules. Significance: The findings of the present study demonstrate the critical role of endogenous testosterone mediating the effects of hypertension increasing leukocyte-endothelial cell interaction. Increased expression of cell adhesion molecules contribute to the effects of endogenous testosterone promoting increased leukocyte rolling and adhesion in SHRs. (c) 2012 Elsevier Inc. All rights reserved.
Resumo:
Recently, new treatment approaches have been developed to target the host component of periodontal disease. This review aims at providing updated information on host-modulating therapies, focusing on treatment strategies for inhibiting signal transduction pathways involved in inflammation. Pharmacological inhibitors of MAPK, NFκB and JAK/STAT pathways are being developed to manage rheumatoid arthritis, periodontal disease and other inflammatory diseases. Through these agents, inflammatory mediators can be inhibited at cell signaling level, interfering on transcription factors activation and inflammatory gene expression. Although these drugs offer great potential to modulate host response, their main limitations are lack of specificity and developments of side effects. After overcoming these limitations, adjunctive host modulating drugs will provide new therapeutic strategies for periodontal treatment.
Resumo:
Toxosplasma gondii is the model parasite of the phylum Apicomplexa, which contains numerous obligate intracellular parasites of medical and veterinary importance, including Eimeria, Sarcocystis, Cryptosporidium, Cyclospora, and Plasmodium species. Members of this phylum actively enter host cells by a multistep process with the help of microneme protein (MIC) complexes that play important roles in motility, host cell attachment, moving junction formation, and invasion. T. gondii (Tg)MIC1-4-6 complex is the most extensively investigated microneme complex, which contributes to host cell recognition and attachment via the action of TgMIC1, a sialic acid-binding adhesin. Here, we report the structure of TgMIC4 and reveal its carbohydrate-binding specificity to a variety of galactose-containing carbohydrate ligands. The lectin is composed of six apple domains in which the fifth domain displays a potent galactose-binding activity, and which is cleaved from the complex during parasite invasion. We propose that galactose recognition by TgMIC4 may compromise host protection from galectin-mediated activation of the host immune system.
Resumo:
Coccidiosis of the domestic fowl is a worldwide disease caused by seven species of protozoan parasites of the genus Eimeria. The genome of the model species, Eimeria tenella, presents a complexity of 55-60 MB distributed in 14 chromosomes. Relatively few studies have been undertaken to unravel the complexity of the transcriptome of Eimeria parasites. We report here the generation of more than 45,000 open reading frame expressed sequence tag (ORESTES) cDNA reads of E. tenella, Eimeria maxima and Eimeria acervulina, covering several developmental stages: unsporulated oocysts, sporoblastic oocysts, sporulated oocysts, sporozoites and second generation merozoites. All reads were assembled to constitute gene indices and submitted to a comprehensive functional annotation pipeline. In the case of E. tenella, we also incorporated publicly available ESTs to generate an integrated body of information. Orthology analyses have identified genes conserved across different apicomplexan parasites, as well as genes restricted to the genus Eimeria. Digital expression profiles obtained from ORESTES/EST countings, submitted to clustering analyses, revealed a high conservation pattern across the three Eimeria spp. Distance trees showed that unsporulated and sporoblastic oocysts constitute a distinct clade in all species, with sporulated oocysts forming a more external branch. This latter stage also shows a close relationship with sporozoites, whereas first and second generation merozoites are more closely related to each other than to sporozoites. The profiles were unambiguously associated with the distinct developmental stages and strongly correlated with the order of the stages in the parasite life cycle. Finally, we present The Eimeria Transcript Database (http://www.coccidia.icb.usp.br/eimeriatdb), a website that provides open access to all sequencing data, annotation and comparative analysis. We expect this repository to represent a useful resource to the Eimeria scientific community, helping to define potential candidates for the development of new strategies to control coccidiosis of the domestic fowl. (C) 2011 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Central nervous system (CNS) tuberculosis (TB) is the most severe form of TB, characterized morphologically by brain granulomas and tuberculous meningitis (TBM). Experimental strategies for the study of the host-pathogen interaction through the analysis of granulomas and its intrinsic molecular mechanisms could provide new insights into the neuropathology of TB. To verify whether cerebellar mycobacterial infection induces the main features of the disease in human CNS and better understand the physiological mechanisms underlying the disease, we injected bacillus Calmette-Guerin (BCG) into the mouse cerebellum. BCG-induced CNS-TB is characterized by the formation of granulomas and TBM, a build up of bacterial loads in these lesions, and microglial recruitment into the lesion sites. In addition, there is an enhanced expression of signaling molecules such as nuclear factor-kappa B (NF-kappa B) and there is a presence of inducible nitric oxide synthase (iNOS) in the lesions and surrounding areas. This murine model of cerebellar CNS-TB was characterized by cellular and biochemical immune responses typically found in the human disease. This model could expand our knowledge about granulomas in TB infection of the cerebellum, and help characterize the physiological mechanisms involved with the progression of this serious illness that is responsible for killing millions people every year. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Antagonistic interactions between host plants and mistletoes often form complex networks of interacting species. Adequate characterization of network organization requires a combination of qualitative and quantitative data. Therefore, we assessed the distribution of interactions between mistletoes and hosts in the Brazilian Pantanal and characterized the network structure in relation to nestedness and modularity. Interactions were highly asymmetric, with mistletoes presenting low host specificity (i.e., weak dependence) and with hosts being highly susceptible to mistletoe-specific infections. We found a non-nested and modular pattern of interactions, wherein each mistletoe species interacted with a particular set of host species. Psittacanthus spp. infected more species and individuals and also caused a high number of infections per individual, whereas the other mistletoes showed a more specialized pattern of infection. For this reason, Psittacanthus spp. were regarded as module hubs while the other mistletoe species showed a peripheral role. We hypothesize that this pattern is primarily the result of different seed dispersal systems. Although all mistletoe species in our study are bird dispersed, the frugivorous assemblage of Psittacanthus spp. is composed of a larger suite of birds, whereas Phoradendron are mainly dispersed by Euphonia species. The larger assemblage of bird species dispersing Psittacanthus seeds may also increase the number of hosts colonized and, consequently, its dominance in the study area. Nevertheless, other restrictions on the interactions among species, such as the differential capacity of mistletoe infections, defense strategies of hosts and habitat types, can also generate or enhance the observed pattern.
Resumo:
Many cell types have no known functional attributes. In the bladder and prostate, basal epithelial and stromal cells appear similar in cytomorphology and share several cell surface markers. Their total gene expression (transcriptome) should provide a clear measure of the extent to which they are alike functionally. Since urologic stromal cells are known to mediate organ-specific tissue formation, these cells in cancers might exhibit aberrant gene expression affecting their function. For transcriptomes, cluster designation (CD) antigens have been identified for cell sorting. The sorted cell populations can be analyzed by DNA microarrays. Various bladder cell types have unique complements of CD molecules. CD9(+) urothelial, CD104(+) basal and CD13(+) stromal cells of the lamina propria were therefore analyzed, as were CD9(+) cancer and CD13(+) cancer-associated stromal cells. The transcriptome datasets were compared by principal components analysis for relatedness between cell types; those with similarity in gene expression indicated similar function. Although bladder and prostate basal cells shared CD markers such as CD104, CD44 and CD49f, they differed in overall gene expression. Basal cells also lacked stem cell gene expression. The bladder luminal and stromal transcriptomes were distinct from their prostate counterparts. In bladder cancer, not only the urothelial but also the stromal cells showed gene expression alteration. The cancer process in both might thus involve defective stromal signaling. These cell-type transcriptomes provide a means to monitor in vitro models in which various CD-isolated cell types can be combined to study bladder differentiation and bladder tumor development based on cell-cell interaction.
Resumo:
Background: Proteinaceous toxins are observed across all levels of inter-organismal and intra-genomic conflicts. These include recently discovered prokaryotic polymorphic toxin systems implicated in intra-specific conflicts. They are characterized by a remarkable diversity of C-terminal toxin domains generated by recombination with standalone toxin-coding cassettes. Prior analysis revealed a striking diversity of nuclease and deaminase domains among the toxin modules. We systematically investigated polymorphic toxin systems using comparative genomics, sequence and structure analysis. Results: Polymorphic toxin systems are distributed across all major bacterial lineages and are delivered by at least eight distinct secretory systems. In addition to type-II, these include type-V, VI, VII (ESX), and the poorly characterized "Photorhabdus virulence cassettes (PVC)", PrsW-dependent and MuF phage-capsid-like systems. We present evidence that trafficking of these toxins is often accompanied by autoproteolytic processing catalyzed by HINT, ZU5, PrsW, caspase-like, papain-like, and a novel metallopeptidase associated with the PVC system. We identified over 150 distinct toxin domains in these systems. These span an extraordinary catalytic spectrum to include 23 distinct clades of peptidases, numerous previously unrecognized versions of nucleases and deaminases, ADP-ribosyltransferases, ADP ribosyl cyclases, RelA/SpoT-like nucleotidyltransferases, glycosyltranferases and other enzymes predicted to modify lipids and carbohydrates, and a pore-forming toxin domain. Several of these toxin domains are shared with host-directed effectors of pathogenic bacteria. Over 90 families of immunity proteins might neutralize anywhere between a single to at least 27 distinct types of toxin domains. In some organisms multiple tandem immunity genes or immunity protein domains are organized into polyimmunity loci or polyimmunity proteins. Gene-neighborhood-analysis of polymorphic toxin systems predicts the presence of novel trafficking-related components, and also the organizational logic that allows toxin diversification through recombination. Domain architecture and protein-length analysis revealed that these toxins might be deployed as secreted factors, through directed injection, or via inter-cellular contact facilitated by filamentous structures formed by RHS/YD, filamentous hemagglutinin and other repeats. Phyletic pattern and life-style analysis indicate that polymorphic toxins and polyimmunity loci participate in cooperative behavior and facultative 'cheating' in several ecosystems such as the human oral cavity and soil. Multiple domains from these systems have also been repeatedly transferred to eukaryotes and their viruses, such as the nucleo-cytoplasmic large DNA viruses. Conclusions: Along with a comprehensive inventory of toxins and immunity proteins, we present several testable predictions regarding active sites and catalytic mechanisms of toxins, their processing and trafficking and their role in intra-specific and inter-specific interactions between bacteria. These systems provide insights regarding the emergence of key systems at different points in eukaryotic evolution, such as ADP ribosylation, interaction of myosin VI with cargo proteins, mediation of apoptosis, hyphal heteroincompatibility, hedgehog signaling, arthropod toxins, cell-cell interaction molecules like teneurins and different signaling messengers.
Resumo:
Schistosoma mansoni is responsible for schistosomiasis, a parasitic disease that affects 200 million people worldwide. Molecular mechanisms of host-parasite interaction are complex and involve a crosstalk between host signals and parasite receptors. TGF-beta signaling pathway has been shown to play an important role in S. mansoni development and embryogenesis. In particular human (h) TGF-beta has been shown to bind to a S. mansoni receptor, transduce a signal that regulates the expression of a schistosome target gene. Here we describe 381 parasite genes whose expression levels are affected by in vitro treatment with hTGF-beta. Among these differentially expressed genes we highlight genes related to morphology, development and cell cycle that could be players of cytokine effects on the parasite. We confirm by qPCR the expression changes detected with microarrays for 5 out of 7 selected genes. We also highlight a set of non-coding RNAs transcribed from the same loci of protein-coding genes that are differentially expressed upon hTCF-beta treatment. These datasets offer potential targets to be explored in order to understand the molecular mechanisms behind the possible role of hTGF-beta effects on parasite biology. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Characterization of Human Respiratory Syncytial Virus (HRSV) protein interactions with host cell components is crucial to devise antiviral strategies. Viral nucleoprotein, phosphoprotein and matrix protein genes were optimized for human codon usage and cloned into expression vectors. HEK-293T cells were transfected with these vectors, viral proteins were immunoprecipitated, and co-immunoprecipitated cellular proteins were identified through mass spectrometry. Cell proteins identified with higher confidence scores were probed in the immunoprecipitation using specific antibodies. The results indicate that nucleoprotein interacts with arginine methyl-transferase, methylosome protein and Hsp70. Phosphoprotein interacts with Hsp70 and tropomysin, and matrix with tropomysin and nucleophosmin. Additionally, we performed immunoprecipitation of these cellular proteins in cells infected with HRSV, followed by detection of co-immunoprecipitated viral proteins. The results indicate that these interactions also occur in the context of viral infection, and their potential contribution for a HRSV replication model is discussed.
Resumo:
The Dengue has become a global public health threat, with over 100 million infections annually; to date there is no specific vaccine or any antiviral drug. The structures of the envelope (E) proteins of the four known serotype of the dengue virus (DENV) are already known, but there are insufficient molecular details of their structural behavior in solution in the distinct environmental conditions in which the DENVs are submitted, from the digestive tract of the mosquito up to its replication inside the host cell. Such detailed knowledge becomes important because of the multifunctional character of the E protein: it mediates the early events in cell entry, via receptor endocytosis and, as a class II protein, participates determinately in the process of membrane fusion. The proposed infection mechanism asserts that once in the endosome, at low pH, the E homodimers dissociate and insert into the endosomal lipid membrane, after an extensive conformational change, mainly on the relative arrangement of its three domains. In this work we employ all-atom explicit solvent Molecular Dynamics simulations to specify the thermodynamic conditions in that the E proteins are induced to experience extensive structural changes, such as during the process of reducing pH. We study the structural behavior of the E protein monomer at acid pH solution of distinct ionic strength. Extensive simulations are carried out with all the histidine residues in its full protonated form at four distinct ionic strengths. The results are analyzed in detail from structural and energetic perspectives, and the virtual protein movements are described by means of the principal component analyses. As the main result, we found that at acid pH and physiological ionic strength, the E protein suffers a major structural change; for lower or higher ionic strengths, the crystal structure is essentially maintained along of all extensive simulations. On the other hand, at basic pH, when all histidine residues are in the unprotonated form, the protein structure is very stable for ionic strengths ranging from 0 to 225 mM. Therefore, our findings support the hypothesis that the histidines constitute the hot points that induce configurational changes of E protein in acid pH, and give extra motivation to the development of new ideas for antivirus compound design.
Resumo:
Background: The unicellular parasite Trypanosoma cruzi is the causative agent of Chagas disease in humans. Adherence of the infective stage to elements of the extracellular matrix (ECM), as laminin and fibronectin, is an essential step in host cell invasion. Although members of the gp85/TS, as Tc85, were identified as laminin and fibronectin ligands, the signaling events triggered on the parasite upon binding to these molecules are largely unexplored. Methodology/Principal Findings: Viable infective parasites were incubated with laminin, fibronectin or bovine serum albumin for different periods of time and the proteins were separated by bidimensional gels. The phosphoproteins were envisaged by specific staining and the spots showing phosphorylation levels significantly different from the control were excised and identified by MS/MS. The results of interest were confirmed by immunoblotting or immunoprecipitation and the localization of proteins in the parasite was determined by immunofluorescence. Using a host cell-free system, our data indicate that the phosphorylation contents of T. cruzi proteins encompassing different cellular functions are modified upon incubation of the parasite with fibronectin or laminin. Conclusions/Significance: Herein it is shown, for the first time, that paraflagellar rod proteins and alpha-tubulin, major structural elements of the parasite cytoskeleton, are predominantly dephosphorylated during the process, probably involving the ERK1/2 pathway. It is well established that T. cruzi binds to ECM elements during the cell infection process. The fact that laminin and fibronectin induce predominantly dephosphorylation of the main cytoskeletal proteins of the parasite suggests a possible correlation between cytoskeletal modifications and the ability of the parasite to internalize into host cells.
Resumo:
TSSA (trypomastigote small surface antigen) is a polymorphic mucin-like molecule displayed on the surface of Trypanosoma cruzi trypomastigote forms. To evaluate its functional properties, we undertook comparative biochemical and genetic approaches on isoforms present in parasite stocks from extant evolutionary lineages (CL Brener and Sylvio X-10). We show that CL Brener TSSA, but not the Sylvio X-10 counterpart, exhibits dose-dependent and saturable binding towards non-macrophagic cell lines. This binding triggers Ca2+-based signalling responses in the target cell while providing an anchor for the invading parasite. Accordingly, exogenous addition of either TSSA-derived peptides or specific antibodies significantly inhibits invasion of CL Brener, but not Sylvio X-10, trypomastigotes. Non-infective epimastigote forms, which do not express detectable levels of TSSA, were stably transfected with TSSA cDNA from either parasite stock. Although both transfectants produced a surface-associated mucin-like TSSA product, epimastigotes expressing CL Brener TSSA showed a similar to 2-fold increase in their attachment to mammalian cells. Overall, these findings indicate that CL Brener TSSA functions as a parasite adhesin, engaging surface receptor(s) and inducing signalling pathways on the host cell as a prerequisite for parasite internalization. More importantly, the contrasting functional features of TSSA isoforms provide one appealing mechanism underlying the differential infectivity of T. cruzi stocks.
Resumo:
The putrescine analogue 1,4-diamino-2-butanone (DAB) is highly toxic to various microorganisms, including Trypanosoma cruzi. Similar to other a-aminocarbonyl metabolites. DAB exhibits pro-oxidant properties. DAB undergoes metal-catalyzed oxidation yielding H2O2, NH4+ ion, and a highly toxic alpha-oxoaldehyde. In vitro. DAB decreases mammalian cell viability associated with changes in redox balance. Here, we aim to clarify the DAB pro-oxidant effects on trypomastigotes and on intracellular T. cruzi amastigotes. DAB (0.05-5 mM) exposure in trypomastigotes, the infective stage of T. cruzi, leads to a decline in parasite viability (IC50 c.a. 0.2 mM DAB; 4 h incubation), changes in morphology, thiol redox imbalance, and increased TcSOD activity. Medium supplementation with catalase (2.5 mu M) protects trypomastigotes against DAB toxicity, while host cell invasion by trypomastigotes is hampered by DAB. Additionally, intracellular amastigotes are susceptible to DAB toxicity. Furthermore, pre-treatment with 100-500 mu M buthionine sulfoximine (BSO) of LLC-MK2 potentiates DAB cytotoxicity, whereas 5 mM N-acetyl-cysteine (NAC) protects cells from oxidative stress. Together, these data support the hypothesis that redox imbalance contributes to DAB cytotoxicity in both T. cruzi and mammalian host cells. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Abstract Background Several pathogens that cause important zoonotic diseases have been frequently associated with armadillos and other xenarthrans. This mammal group typically has evolved on the South American continent and many of its extant species are seriously threatened with extinction. Natural infection of armadillos with Paracoccidioides brasiliensis in hyperendemic areas has provided a valuable opportunity for understanding the role of this mammal in the eco-epidemiology of Paracoccidioidomycosis (PCM), one of the most important systemic mycoses in Latin America. Findings This study aimed to detect P. brasiliensis in different xenarthran species (Dasypus novemcinctus, Cabassous spp., Euphractus sexcinctus, Tamandua tetradactyla and Myrmecophaga tridactyla), by molecular and mycological approaches, in samples obtained by one of the following strategies: i) from road-killed animals (n = 6); ii) from naturally dead animals (n = 8); iii) from animals that died in captivity (n = 9); and iv) from living animals captured from the wild (n = 2). Specific P. brasiliensis DNA was detected in several organs among 7/20 nine-banded armadillos (D. novemcinctus) and in 2/2 anteaters (M. tridactyla). The fungus was also cultured in tissue samples from one of two armadillos captured from the wild. Conclusion Members of the Xenarthra Order, especially armadillos, have some characteristics, including a weak cellular immune response and low body temperature, which make them suitable models for studying host-pathogen interaction. P. brasiliensis infection in wild animals, from PCM endemic areas, may be more common than initially postulated and reinforces the use of these animals as sentinels for the pathogen in the environment.