10 resultados para T. cruzi-infected rat
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
We recently showed that oxadiazoles have anti-Trypanosoma cruzi activity at micromolar concentrations. These compounds are easy to synthesize and show a number of clear and interpretable structure-activity relationships (SAR), features that make them attractive to pursue potency enhancement. We present here the structural design, synthesis, and anti-T. cruzi evaluation of new oxadiazoles denoted 5a-h and 6a-h. The design of these compounds was based on a previous model of computational docking of oxadiazoles on the T. cruzi protease cruzain. We tested the ability of these compounds to inhibit catalytic activity of cruzain, but we found no correlation between the enzyme inhibition and the antiparasitic activity of the compounds. However, we found reliable SAR data when we tested these compounds against the whole parasite. While none of these oxadiazoles showed toxicity for mammalian cells, oxadiazoles 6c (fluorine), 6d (chlorine), and 6e (bromine) reduced epimastigote proliferation and were cidal for trypomastigotes of T. cruzi Y strain. Oxadiazoles 6c and 6d have IC50 of 9.5 +/- 2.8 and 3.5 +/- 1.8 mu M for trypomastigotes, while Benznidazole, which is the currently used drug for Chagas disease treatment, showed an IC50 of 11.3 +/- 2.8 mu M. Compounds 6c and 6d impair trypomastigote development and invasion in macrophages, and also induce ultrastructural alterations in trypomastigotes. Finally, compound 6d given orally at 50 mg/kg substantially reduces the parasitemia in T. cruzi-infected BALB/c mice. Our drug design resulted in potency enhancement of oxadiazoles as anti-Chagas disease agents, and culminated with the identification of oxadiazole 6d, a trypanosomicidal compound in an animal model of infection. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Chronic Chagas cardiomyopathy evolves over a long period of time after initial infection by Trypanosoma cruzi. Similarly, a cardiomyopathy appears later in life in muscular dystrophies. This study tested the hypothesis that dystrophin levels are decreased in the early stage of T cruzi-infected mice that precedes the later development of a cardiomyopathy. CD1 mice were infected with T cruzi (Brazil strain), killed at 30 and 100 days post infection (dpi), and the intensity of inflammation, percentage of interstitial fibrosis, and dystrophin levels evaluated. Echocardiography and magnetic resonance imaging data were evaluated from 15 to 100 dpi. At 30 dpi an intense acute myocarditis with ruptured or intact intracellular parasite nests was observed. At 100 dpi a mild chronic fibrosing myocarditis was detected without parasites in the myocardium. Dystrophin was focally reduced or completely lost in cardiomyocytes at 30 dpi, with the reduction maintained up to 100 dpi. Concurrently, ejection fraction was reduced and the right ventricle was dilated. These findings support the hypothesis that the initial parasitic infection-induced myocardial dystrophin reduction/loss, maintained over time, might be essential to the late development of a cardiomyopathy in mice. (C) 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Resumo:
The tissue changes that occur in Chagas disease are related to the degree of oxidative stress and antioxidant capacity of affected tissue. Studies with vitamin C supplementation did not develop oxidative damage caused by Chagas disease in the host, but other studies cite the use of peroxiredoxins ascorbate - dependent on T. cruzi to offer protection against immune reaction. Based on these propositions, thirty "Swiss" mice were infected with T. cruzi QM1 strain and treated with two different vitamin C doses in order to study the parasitemia evolution, histopathological changes and lipid peroxidation biomarkers during the acute phase of Chagas disease. The results showed that the parasite clearance was greater in animals fed with vitamin C overdose. There were no significant differences regarding the biomarkers of lipid peroxidation and inflammatory process or the increase of myocardium in animals treated with the recommended dosage. The largest amount of parasite growth towards the end of the acute phase suggests the benefit of high doses of vitamin C for trypomastigotes. The supplementation doesn't influence the production of free radicals or the number of amastigote nests in the acute phase of Chagas disease.
Resumo:
We modified the thiazolidinic ring at positions N3, C4, and C5, yielding compounds 6-24. Compounds with a phenyl at position N3, 15-19, 22-24, exhibited better inhibitory properties for cruzain and against the parasite than 2-iminothiazolidin-4-one S. We were able to identify one high-efficacy trypanocidal compound, 2-minothiazolidin-4-one 18, which inhibited the activity of cruzain and the proliferation of epirnastigotes and was cidal for trypomastigotes but was not toxic for splenocytes. Having located some of the structural determinants of the trypanocidal properties, we subsequently wished to determine if the exchange of the thiazolidine for a thiazole ring leaves the functional properties unaffected. We therefore tested thiazoles 26-45 and observed that they did not inhibit cruzain, but they exhibited trypanocidal effects. Parasite development was severely impaired when treated with 18, thus reinforcing the notion that this class of heterocycles can lead to useful cidal agents for Chagas disease.
Resumo:
The tissue changes that occur in Chagas disease are related to the degree of oxidative stress and antioxidant capacity of affected tissue. Studies with vitamin C supplementation did not develop oxidative damage caused by Chagas disease in the host, but other studies cite the use of peroxiredoxins ascorbate - dependent on T. cruzi to offer protection against immune reaction. Based on these propositions, thirty "Swiss" mice were infected with T. cruzi QM1 strain and treated with two different vitamin C doses in order to study the parasitemia evolution, histopathological changes and lipid peroxidation biomarkers during the acute phase of Chagas disease. The results showed that the parasite clearance was greater in animals fed with vitamin C overdose. There were no significant differences regarding the biomarkers of lipid peroxidation and inflammatory process or the increase of myocardium in animals treated with the recommended dosage. The largest amount of parasite growth towards the end of the acute phase suggests the benefit of high doses of vitamin C for trypomastigotes. The supplementation doesn't influence the production of free radicals or the number of amastigote nests in the acute phase of Chagas disease.
Resumo:
Chagas' disease is a protozoosis caused by Trypanosoma cruzi that frequently shows severe chronic clinical complications of the heart or digestive system. Neurological disorders due to T. cruzi infection are also described in children and immunosuppressed hosts. We have previously reported that IL-12p40 knockout (KO) mice infected with the T. cruzi strain Sylvio X10/4 develop spinal cord neurodegenerative disease. Here, we further characterized neuropathology, parasite burden and inflammatory component associated to the fatal neurological disorder occurring in this mouse model. Forelimb paralysis in infected IL-12p40KO mice was associated with 60% (p<0.05) decrease in spinal cord neuronal density, glutamate accumulation (153%, p<0.05) and strong demyelization in lesion areas, mostly in those showing heavy protein nitrosylation, all denoting a neurotoxic degenerative profile. Quantification of T. cruzi 18S rRNA showed that parasite burden was controlled in the spinal cord of WT mice, decreasing from the fifth week after infection, but progressive parasite dissemination was observed in IL-12p40KO cords concurrent with significant accumulation of the astrocytic marker GFAP (317.0%, p<0.01) and 8-fold increase in macrophages/microglia (p<0.01), 36.3% (p<0.01) of which were infected. Similarly, mRNA levels for CD3, TNF-alpha, IFN-gamma, iNOS, IL-10 and arginase I declined in WT spinal cords about the fourth or fifth week after infection, but kept increasing in IL-12p40KO mice. Interestingly, compared to WT tissue, lower mRNA levels for IFN-gamma were observed in the IL-12p40KO spinal cords up to the fourth week of infection. Together the data suggest that impairments of parasite clearance mechanisms in IL-12p40KO mice elicit prolonged spinal cord inflammation that in turn leads to irreversible neurodegenerative lesions.
Resumo:
To confirm that Beagle dogs are a good experimental model for Chagas disease, we evaluated hematological alterations during the acute and chronic phases in Beagle dogs infected with the Y, Berenice-78 (Be-78) and ABC strains of Trypanosoma cruzi, correlating clinical signs with the parasitemia curve. We demonstrate that the acute phase of infection was marked by lethargy and loss of appetite. Simultaneously, we observed anemia, leukocytosis and lymphocytosis. Also,we describe hematological alterations and clinical signs that were positively correlated with the parasitemia during the experimental infection with the three strains of T cruzi, and demonstrate that experimental infection of Beagle is a trustworthy model for Chagas disease.
Resumo:
(NO)-N-center dot is considered to be a key macrophage-derived cytotoxic effector during Trypanosoma cruzi infection. On the other hand, the microbicidal properties of reactive oxygen species (ROS) are well recognized, but little importance has been attributed to them during in vivo infection with T. cruzi. In order to investigate the role of ROS in T. cruzi infection, mice deficient in NADPH phagocyte oxidase (gp91(phox-/-) or phox KO) were infected with Y strain of T. cruzi and the course of infection was followed. phox KO mice had similar parasitemia, similar tissue parasitism and similar levels of IFN-gamma and TNF in serum and spleen cell culture supernatants, when compared to wild-type controls. However, all phox KO mice succumbed to infection between day 15 and 21 after inoculation with the parasite, while 60% of wild-type mice were alive 50 days after infection. Further investigation demonstrated increased serum levels of nitrite and nitrate (NOx) at day 15 of infection in phox KO animals, associated with a drop in blood pressure. Treatment with a NOS2 inhibitor corrected the blood pressure, implicating NOS2 in this phenomenon. We postulate that superoxide reacts with (NO)-N-center dot in vivo, preventing blood pressure drops in wild type mice. Hence, whilst superoxide from phagocytes did not play a critical role in parasite control in the phox KO animals, its production would have an important protective effect against blood pressure decline during infection with T. cruzi.
Resumo:
Background: The hallmark of Chagas disease (CD) is multifocal myocarditis and extensive fibrosis. We investigated the potential effect of colchicine on myocardial remodeling in experimental CD. Methods and Results: One hundred Syrian hamsters were randomly divided into noninfected untreated control (CG), noninfected control treated with colchicine (COLG 0.4 mg kg(-1) d(-1) by gavage), infected (IG), and infected treated with colchicine (ICOLG, 0.4 mg kg(-1) d(-1)) groups. The interstitial collagen volume fraction (ICVF) was evaluated by videomorphometry with picrosirius red staining. The gelatinolytic activities of matrix metalloproteinase (MMP) 2 were examined with the use of zymography. Myocarditis was described according to the Dallas criteria. Statistical comparisons were performed with parametric analysis of variance and Tukey test. ICVF (%) accumulation was attenuated in infected colchicine-treated animals in the left (CG 0.81 +/- 0.13, COLG 0.85 +/- 0.13, IG: 1.35 +/- 0.31,* ICOLG 1.06 +/- 0.19; *P < .05 compared with ICOLG) and right ventricles (CG 1.4 +/- 0.36, COLG 1.26 +/- 0.14, IG 1.97 +/- 0.058,* ICOLG: 1.52 +/- 0.23; *P < .05 compared with ICOLG). A significant increase in MMP-2 enzymatic activity (UA) was observed in ICOLG (17,432.8*) compared with GC (3731.6), COLG (2,792.6), and IG (4,286.3; *P < .001). In IG, 66% of animals had myocarditis compared with only 49% in ICOLG. Conclusions: Colchicine had a protective effect on myocardium, indicated by decreased interstitial myocardial fibrosis, increased intensity of MMP-2, and attenuated myocardial inflammation. (J Cardiac Fail 2012;18:654-659)
Resumo:
BACKGROUND AND PURPOSE Independent studies in experimental models of Trypanosoma cruzi appointed different roles for endothelin-1 (ET-1) and bradykinin (BK) in the immunopathogenesis of Chagas disease. Here, we addressed the hypothesis that pathogenic outcome is influenced by functional interplay between endothelin receptors (ETAR and ETBR) and bradykinin B2 receptors (B2R). EXPERIMENTAL APPROACH Intravital microscopy was used to determine whether ETR/B2R drives the accumulation of rhodamine-labelled leucocytes in the hamster cheek pouch (HCP). Inflammatory oedema was measured in the infected BALB/c paw of mice. Parasite invasion was assessed in CHO over-expressing ETRs, mouse cardiomyocytes, endothelium (human umbilical vein endothelial cells) or smooth muscle cells (HSMCs), in the presence/absence of antagonists of B2R (HOE-140), ETAR (BQ-123) and ETBR (BQ-788), specific IgG antibodies to each GPCRs; cholesterol or calcium-depleting drugs. RNA interference (ETAR or ETBR genes) in parasite infectivity was investigated in HSMCs. KEY RESULTS BQ-123, BQ-788 and HOE-140 reduced leucocyte accumulation in HCP topically exposed to trypomastigotes and blocked inflammatory oedema in infected mice. Acting synergistically, ETAR and ETBR antagonists reduced parasite invasion of HSMCs to the same extent as HOE-140. Exogenous ET-1 potentiated T. cruzi uptake by HSMCs via ETRs/B2R, whereas RNA interference of ETAR and ETBR genes conversely reduced parasite internalization. ETRs/B2R-driven infection in HSMCs was reduced in HSMC pretreated with methyl-beta-cyclodextrin, a cholesterol-depleting drug, or in thapsigargin-or verapamil-treated target cells. CONCLUSIONS AND IMPLICATIONS Our findings suggest that plasma leakage, a neutrophil-driven inflammatory response evoked by trypomastigotes via the kinin/endothelin pathways, may offer a window of opportunity for enhanced parasite invasion of cardiovascular cells.