15 resultados para Symmetric matrices
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
We consider a generalized discriminant associated to a symmetric space which generalizes the discriminant of real symmetric matrices, and note that it can be written as a sum of squares of real polynomials. A method to estimate the minimum number of squares required to represent the discrimininant is developed and applied in examples.
Resumo:
The modern GPUs are well suited for intensive computational tasks and massive parallel computation. Sparse matrix multiplication and linear triangular solver are the most important and heavily used kernels in scientific computation, and several challenges in developing a high performance kernel with the two modules is investigated. The main interest it to solve linear systems derived from the elliptic equations with triangular elements. The resulting linear system has a symmetric positive definite matrix. The sparse matrix is stored in the compressed sparse row (CSR) format. It is proposed a CUDA algorithm to execute the matrix vector multiplication using directly the CSR format. A dependence tree algorithm is used to determine which variables the linear triangular solver can determine in parallel. To increase the number of the parallel threads, a coloring graph algorithm is implemented to reorder the mesh numbering in a pre-processing phase. The proposed method is compared with parallel and serial available libraries. The results show that the proposed method improves the computation cost of the matrix vector multiplication. The pre-processing associated with the triangular solver needs to be executed just once in the proposed method. The conjugate gradient method was implemented and showed similar convergence rate for all the compared methods. The proposed method showed significant smaller execution time.
Resumo:
The worldwide production of bamboo generates large volumes of leaf wastes, which are deposited in landfills or burned in an uncontrolled manner, with negative effects in the environment. The ash obtained by calcining of the bamboo leaf waste, shows good qualities as supplementary cementing material for the production of blended cements. The current paper shows a detailed scientific study of a Brazilian bamboo leaf ash (BLA) calcined at 600 degrees C in small scale condition, by using different techniques (XRF, XRD, SEM/EDX, FT-IR, TG/DTG) and technical study in order. to analyse the behaviour of this ash in blended cements elaborated with 10% and 20% by mass of BLA. The results stated that this ash shows a very high pozzolanic activity, with a reaction rate constant K of the order of 10(-1)/h and type I CSH gel was the main hydrated phase obtained from pozzolanic reaction. The BLA blended cements (10% and 20%) complied with the physical and mechanical requirements of the existing European standards. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
We study nano-sized spherically symmetric plasma structures which are radial nonlinear oscillations of electrons in plasma. The effective interaction of these plasmoids via quantum exchange forces between ions is described. We calculate the energy of this interaction for the case of a dense plasma. The conditions when the exchange interaction is attractive are examined and it is shown that separate plasmoids can form a single object. The application of our results to the theoretical description of stable atmospheric plasma structures is considered. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
In this paper we obtain asymptotic expansions, up to order n(-1/2) and under a sequence of Pitman alternatives, for the nonnull distribution functions of the likelihood ratio, Wald, score and gradient test statistics in the class of symmetric linear regression models. This is a wide class of models which encompasses the t model and several other symmetric distributions with longer-than normal tails. The asymptotic distributions of all four statistics are obtained for testing a subset of regression parameters. Furthermore, in order to compare the finite-sample performance of these tests in this class of models, Monte Carlo simulations are presented. An empirical application to a real data set is considered for illustrative purposes. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Calcium carbonate is one of the most important biominerals, and it is the main constituent of pearls, seashells, and teeth. The in vitro crystallization of calcium carbonate using different organic matrices as templates has been reported. In this work, the growth of calcium carbonate thin films on special organic matrices consisting of layer-by-layer (LbL) polyelectrolyte films deposited on a pre-formed phospholipid Langmuir-Blodgett (LB) film has been studied. Two types of randomly coiled polyelectrolytes have been used: lambda-carrageenan and poly(acrylic acid). A precoating comprised of LB films has been prepared by employing a negatively charged phospholipid, the sodium salt of dimyristoilphosphatidyl acid (DMPA), or a zwitterionic phospholipid, namely dimyristoilphosphatidylethanolamine (DMPE). This approach resulted in the formation of particulate calcium carbonate continuous films with different morphologies, particle sizes, and roughness, as revealed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The crystalline structure of the calcium carbonate particles was analyzed by Raman spectroscopy. The randomly coiled conformation of the polyelectrolytes seems to be the main reason for the formation of continuous films rather than CaCO3 isolated crystals. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Arnold [V.I. Arnold, On matrices depending on parameters, Russian Math. Surveys 26 (2) (1971) 29-43] constructed miniversal deformations of square complex matrices under similarity; that is, a simple normal form to which not only a given square matrix A but all matrices B close to it can be reduced by similarity transformations that smoothly depend on the entries of B. We construct miniversal deformations of matrices under congruence. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Drug testing is used by employers to detect drug use by employees or job candidates. It can identify recent use of alcohol, prescription drugs, and illicit drugs as a screening tool for potential health and safety and performance issues. Urine is the most commonly used sample for illicit drugs. It detects the use of a drug within the last few days and as such is evidence of recent use; but a positive test does not necessarily mean that the individual was impaired at the time of the test. Abstention from use for three days will often produce a negative test result. Analysis of hair provides a much longer window of detection, typically 1 to 3 months. Hence the likelihood of a falsely negative test using hair is very much less than with a urine test. Conversely, a negative hair test is a substantially stronger indicator of a non-drug user than a negative urine test. Oral fluid (saliva) is also easy to collect. Drugs remain in oral fluid for a similar time as in blood. The method is a good way of detecting current use and is more likely to reflect current impairment. It offers promise as a test in post-accident, for cause, and on-duty situations. Studies have shown that within the same industrial settings, hair testing can detect twice as many drug users as urine testing. Copyright (C) 2012 John Wiley & Sons, Ltd.
Resumo:
The method of steepest descent is used to study the integral kernel of a family of normal random matrix ensembles with eigenvalue distribution P-N (z(1), ... , z(N)) = Z(N)(-1)e(-N)Sigma(N)(i=1) V-alpha(z(i)) Pi(1 <= i<j <= N) vertical bar z(i) - z(j)vertical bar(2), where V-alpha(z) = vertical bar z vertical bar(alpha), z epsilon C and alpha epsilon inverted left perpendicular0, infinity inverted right perpendicular. Asymptotic formulas with error estimate on sectors are obtained. A corollary of these expansions is a scaling limit for the n-point function in terms of the integral kernel for the classical Segal-Bargmann space. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3688293]
Resumo:
We investigate the classical integrability of the Alday-Arutyunov-Frolov model, and show that the Lax connection can be reduced to a simpler 2 x 2 representation. Based on this result, we calculate the algebra between the L-operators and find that it has a highly non-ultralocal form. We then employ and make a suitable generalization of the regularization technique proposed by Mail let for a simpler class of non-ultralocal models, and find the corresponding r- and s-matrices. We also make a connection between the operator-regularization method proposed earlier for the quantum case, and the Mail let's symmetric limit regularization prescription used for non-ultralocal algebras in the classical theory.
Resumo:
Complexes of the type {[(pyS)Ru(NH3)(4)](2)-mu-L}(n), where pyS = 4-mercaptopyridine, L = 4,4'-dithiodipyridine (pySSpy), pyrazine (pz) and 1,4-dicyanobenzene (DCB), and n = +4 and +5 for fully reduced and mixed-valence complexes, respectively, were synthesized and characterized. Electrochemical data showed that there is electron communication between the metal centers with comproportionation constants of 33.2, 1.30 x 10(8) and 5.56 x 10(5) for L = pySSpy, pz and DCB, respectively. It was also observed that the electronic coupling between the metal centers is affected by the p-back-bonding interaction toward the pyS ligand. Raman spectroscopy showed a dependence of the intensity of the vibrational modes on the exciting radiations giving support to the assignments of the electronic transitions. The degree of electron communication between the metal centers through the bridging ligands suggests that these systems can be molecular wire materials.
Resumo:
The replacement of phenol with sodium lignosulfonate and formaldehyde with glutaraldehyde in the preparation of resins resulted in a new resol-type phenolic resin, sodium lignosulfonate-glutaraldehyde resin, in addition to sodium lignosulfonate-formaldehyde and phenol-formaldehyde resins. These resins were then used to prepare thermosets and composites reinforced with sisal fibers. Different techniques were used to characterize raw materials and/or thermosets and composites, including inverse gas chromatography, thermogravimetric analysis, and mechanical impact and flexural tests. The substitution of phenol by sodium lignosulfonate in the formulation of the composite matrices increased the impact strength of the respective composites from approximately 400 Jm(-1) to 800 J m(-1) and 1000 J m(-1), showing a considerable enhancement from the replacement of phenol with sodium lignosulfonate. The wettability of the sisal fibers increased when the resins were prepared from sodium lignosulfonate, generating composites in which the adhesion at the fiber-matrix interface was stronger and favored the transference of load from the matrix to the fiber during impact. Results suggested that the composites experienced a different mechanism of load transfer from the matrix to the fiber when a bending load was applied, compared to that experienced during impact. The thermogravimetric analysis results demonstrated that the thermal stability of the composites was not affected by the use of sodium lignosulfonate as a phenolic-type reagent during the preparation of the matrices.
Resumo:
This paper presents a new parallel methodology for calculating the determinant of matrices of the order n, with computational complexity O(n), using the Gauss-Jordan Elimination Method and Chio's Rule as references. We intend to present our step-by-step methodology using clear mathematical language, where we will demonstrate how to calculate the determinant of a matrix of the order n in an analytical format. We will also present a computational model with one sequential algorithm and one parallel algorithm using a pseudo-code.
Resumo:
OBJECTIVE: To verify if there is difference in the buccal and posterior corridor width in cases treated with extraction of one and four premolars. METHODS: Through posed smile photographs of 23 Class II patients, subdivision, treated with extraction of one premolar and 25 Class I and Class II patients, subdivision, treated with extraction of four premolars, the percentage of buccal and posterior corridor width was calculated. The two protocols of extractions were compared regarding the buccal and posterior corridor width by independent t tests. RESULTS: There was no statistically significant difference on the buccal and posterior corridor widths between patients treated with symmetric and asymmetric extraction. CONCLUSION: The buccal and posterior corridor did not differ between the evaluated protocols of extractions.
Resumo:
Tailoring properties of materials by femtosecond laser processing has been proposed in the last decade as a powerful approach for technological applications, ranging from optics to biology. Although most of the research output in this field is related to femtosecond laser processing of single either organic or inorganic materials, more recently a similar approach has been proposed to develop advanced hybrid nanomaterials. Here, we report results on the use of femtosecond lasers to process hybrid nanomaterials, composed of polymeric and glassy matrices containing metal or semiconductor nanostructures. We present results on the use of femtosecond pulses to induce Cu and Ag nanoparticles in the bulk of borate and borosilicate glasses, which can be applied for a new generation of waveguides. We also report on 3D polymeric structures, fabricated by two-photon polymerization, containing Au and ZnO nanostructures, with intense two-photon fluorescent properties. The approach based on femtosecond laser processing to fabricate hybrid materials containing metal or semiconductor nanostructures is promising to be exploited for optical sensors and photonics devices.