2 resultados para Symmetric functions
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
We characterize finite determinacy of map germs f : (C-2, 0) -> (C-3, 0) in terms of the Milnor number mu(D(f)) of the double point curve D(f) in (C-2, 0) and we provide an explicit description of the double point scheme in terms of elementary symmetric functions. Also we prove that the Whitney equisingularity of 1-parameter families of map germs f(t) : (C-2, 0) -> (C-3, 0) is equivalent to the constancy of both mu(D(f(t))) and mu(f(t)(C-2)boolean AND H) with respect to t, where H subset of C-3 is a generic plane. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In this paper we obtain asymptotic expansions, up to order n(-1/2) and under a sequence of Pitman alternatives, for the nonnull distribution functions of the likelihood ratio, Wald, score and gradient test statistics in the class of symmetric linear regression models. This is a wide class of models which encompasses the t model and several other symmetric distributions with longer-than normal tails. The asymptotic distributions of all four statistics are obtained for testing a subset of regression parameters. Furthermore, in order to compare the finite-sample performance of these tests in this class of models, Monte Carlo simulations are presented. An empirical application to a real data set is considered for illustrative purposes. (C) 2011 Elsevier B.V. All rights reserved.