5 resultados para Surface approximation
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The numerical simulation of flows of highly elastic fluids has been the subject of intense research over the past decades with important industrial applications. Therefore, many efforts have been made to improve the convergence capabilities of the numerical methods employed to simulate viscoelastic fluid flows. An important contribution for the solution of the High-Weissenberg Number Problem has been presented by Fattal and Kupferman [J. Non-Newton. Fluid. Mech. 123 (2004) 281-285] who developed the matrix-logarithm of the conformation tensor technique, henceforth called log-conformation tensor. Its advantage is a better approximation of the large growth of the stress tensor that occur in some regions of the flow and it is doubly beneficial in that it ensures physically correct stress fields, allowing converged computations at high Weissenberg number flows. In this work we investigate the application of the log-conformation tensor to three-dimensional unsteady free surface flows. The log-conformation tensor formulation was applied to solve the Upper-Convected Maxwell (UCM) constitutive equation while the momentum equation was solved using a finite difference Marker-and-Cell type method. The resulting developed code is validated by comparing the log-conformation results with the analytic solution for fully developed pipe flows. To illustrate the stability of the log-conformation tensor approach in solving three-dimensional free surface flows, results from the simulation of the extrudate swell and jet buckling phenomena of UCM fluids at high Weissenberg numbers are presented. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The magnetic properties of Mn nanostructures on the Fe(001) surface have been studied using the noncollinear first-principles real space-linear muffin-tin orbital-atomic sphere approximation method within density-functional theory. We have considered a variety of nanostructures such as adsorbed wires, pyramids, and flat and intermixed clusters of sizes varying from two to nine atoms. Our calculations of interatomic exchange interactions reveal the long-range nature of exchange interactions between Mn-Mn and Mn-Fe atoms. We have found that the strong dependence of these interactions on the local environment, the magnetic frustration, and the effect of spin-orbit coupling lead to the possibility of realizing complex noncollinear magnetic structures such as helical spin spiral and half-skyrmion.
Resumo:
In this work we employ the state of the art pseudopotential method, within a generalized gradient approximation to the density functional theory, to investigate the adsorption process of benzenethiol and diphenyl disulfide with the silicon (001) surface. A direct comparison of different adsorption structures with Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) allow us to identify that benzenethiol and diphenyl disulfide dissociatively adsorb on the silicon surface. In addition, theoretically obtained data suggests that the C6H5SH:Si(001) presents a higher Schottky barrier height contact when compared to other similar aromatic molecules.
Resumo:
This Letter reports an investigation on the optical properties of copper nanocubes as a function of size as modeled by the discrete dipole approximation. In the far-field, our results showed that the extinction resonances shifted from 595 to 670 nm as the size increased from 20 to 100 nm. Also, the highest optical efficiencies for absorption and scattering were obtained for nanocubes that were 60 and 100 nm in size, respectively. In the near-field, the electric-field amplitudes were investigated considering 514, 633 and 785 nm as the excitation wavelengths. The E-fields increased with size, being the highest at 633 nm. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
This paper discusses the redefinition of the function of freehand drawing in the design process in view of intuitive digital media. It sets forth an interpretive analysis of an experiment with drawing on opaque tablets, carried out with a group of students of the Instituto de Arquitetura e Urbanismo da Universidade de São Paulo. After a brief review of the current debate on freehand drawing and the advent of digital media, we examine the experiment as a possible way to elicit facts that may contribute to the discussion. To this end, our research has concentrated on the intuitive use enabled by existing digital media. It is our intention that this empirical approximation becomes a pilot experiment for the use of digital tablets in the process of construction the gaze of the student in Architecture and Urbanism as a reflection on the different cognitive dimensions that constitute the practice of drawing and its reinterpretation to develop new ideas.