13 resultados para Structural masonry. Numerical modeling. Bending perpendicular to the plane. Retaining walls

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract (2,250 Maximum Characters): Several theories of tidal evolution, since the theory developed by Darwin in the XIX century, are based on the figure of equilibrium of the tidally deformed body. Frequently the adopted figure is a Jeans prolate spheroid. In some case, however, the rotation is important and Roche ellipsoids are used. The main limitations of these models are (a) they refer to homogeneous bodies; (b) the rotation axis is perpendicular to the plane of the orbit. This communication aims at presenting several results in which these hypotheses are not done. In what concerns the non-homogeneity, the presented results concerns initially bodies formed by N homogeneous layers and we study the non sphericity of each layer and relate them to the density distribution. The result is similar to the Clairaut figure of equilibrium, often used in planetary sciences, but taking into full account the tidal deformation. The case of the rotation axis non perpendicular to the orbital plane is much more complex and the study has been restricted for the moment to the case of homogeneous bodies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work provides a numerical and experimental investigation of fatigue crack growth behavior in steel weldments including crack closure effects and their coupled interaction with weld strength mismatch. A central objective of this study is to extend previously developed frameworks for evaluation of crack clo- sure effects on FCGR to steel weldments while, at the same time, gaining additional understanding of commonly adopted criteria for crack closure loads and their influence on fatigue life of structural welds. Very detailed non-linear finite element analyses using 3-D models of compact tension C ( T ) fracture spec- imens with center cracked, square groove welds provide the evolution of crack growth with cyclic stress intensity factor which is required for the estimation of the closure loads. Fatigue crack growth tests con- ducted on plane-sided, shallow-cracked C ( T ) specimens provide the necessary data against which crack closure effects on fatigue crack growth behavior can be assessed. Overall, the present investigation pro- vides additional support for estimation procedures of plasticity-induced crack closure loads in fatigue analyses of structural steels and their weldments

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular modeling is growing as a research tool in Chemical Engineering studies, as can be seen by a simple research on the latest publications in the field. Molecular investigations retrieve information on properties often accessible only by expensive and time-consuming experimental techniques, such as those involved in the study of radical-based chain reactions. In this work, different quantum chemical techniques were used to study phenol oxidation by hydroxyl radicals in Advanced Oxidation Processes used for wastewater treatment. The results obtained by applying a DFT-based model showed good agreement with experimental values available, as well as qualitative insights into the mechanism of the overall reaction chain. Solvation models were also tried, but were found to be limited for this reaction system within the considered theoretical level without further parameterization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular modeling is growing as a research tool in Chemical Engineering studies, as can be seen by a simple research on the latest publications in the field. Molecular investigations retrieve information on properties often accessible only by expensive and time-consuming experimental techniques, such as those involved in the study of radical-based chain reactions. In this work, different quantum chemical techniques were used to study phenol oxidation by hydroxyl radicals in Advanced Oxidation Processes used for wastewater treatment. The results obtained by applying a DFT-based model showed good agreement with experimental values available, as well as qualitative insights into the mechanism of the overall reaction chain. Solvation models were also tried, but were found to be limited for this reaction system within the considered theoretical level without further parameterization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Micelles composed of amphiphilic copolymers linked to a radioactive element are used in nuclear medicine predominantly as a diagnostic application. A relevant advantage of polymeric micelles in aqueous solution is their resulting particle size, which can vary from 10 to 100 nm in diameter. In this review, polymeric micelles labeled with radioisotopes including technetium (99mTc) and indium (111In), and their clinical applications for several diagnostic techniques, such as single photon emission computed tomography (SPECT), gamma-scintigraphy, and nuclear magnetic resonance (NMR), were discussed. Also, micelle use primarily for the diagnosis of lymphatic ducts and sentinel lymph nodes received special attention. Notably, the employment of these diagnostic techniques can be considered a significant tool for functionally exploring body systems as well as investigating molecular pathways involved in the disease process. The use of molecular modeling methodologies and computer-aided drug design strategies can also yield valuable information for the rational design and development of novel radiopharmaceuticals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dengue is the most prevalent arboviral infection, affecting millions of people every year. Attempts to control such infection are being made, and the development of a vaccine is a World Health Organization priority. Among the proteins being tested as vaccine candidates in preclinical settings is the non-structural protein 1 (NS1). In the present study, we tested the immune responses generated by targeting the NS1 protein to two different dendritic cell populations. Dendritic cells (DCs) are important antigen presenting cells, and targeting proteins to maturing DCs has proved to be an efficient means of immunization. Antigen targeting is accomplished by the use of a monoclonal antibody (mAb) directed against a DC cell surface receptor fused to the protein of interest. We used two mAbs (αDEC205 and αDCIR2) to target two distinct DC populations, expressing either DEC205 or DCIR2 endocytic receptors, respectively, in mice. The fusion mAbs were successfully produced, bound to their respective receptors, and were used to immunize BALB/c mice in the presence of polyriboinosinic: polyribocytidylic acid (poly (I:C)), as a DC maturation stimulus. We observed induction of strong anti-NS1 antibody responses and similar antigen binding affinity irrespectively of the DC population targeted. Nevertheless, the IgG1/IgG2a ratios were different between mouse groups immunized with αDEC-NS1 and αDCIR2-NS1 mAbs. When we tested the induction of cellular immune responses, the number of IFN-γ producing cells was higher in αDEC-NS1 immunized animals. In addition, mice immunized with the αDEC-NS1 mAb were significantly protected from a lethal intracranial challenge with the DENV2 NGC strain when compared to mice immunized with αDCIR2-NS1 mAb. Protection was partially mediated by CD4(+) and CD8(+) T cells as depletion of these populations reduced both survival and morbidity signs. We conclude that targeting the NS1 protein to the DEC205(+) DC population with poly (I:C) opens perspectives for dengue vaccine development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been shown that the vertical structure of the Brazil Current (BC)-Intermediate Western Boundary Current (IWBC) System is dominated by the first baroclinic mode at 22 degrees S-23 degrees S. In this work, we employed the Miami Isopycnic Coordinate Ocean Model to investigate whether the rich mesoscale activity of this current system, between 20 degrees S and 28 degrees S, is reproduced by a two-layer approximation of its vertical structure. The model results showed cyclonic and anticyclonic meanders propagating southwestward along the current axis, resembling the dynamical pattern of Rossby waves superposed on a mean flow. Analysis of the upper layer zonal velocity component, using a space-time diagram, revealed a dominant wavelength of about 450 km and phase velocity of about 0.20 ms(-1) southwestward. The results also showed that the eddy-like structures slowly grew in amplitude as they moved downstream. Despite the simplified design of the numerical experiments conducted here, these results compared favorably with observations and seem to indicate that weakly unstable long baroclinic waves are responsible for most of the variability observed in the BC-IWBC system. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work used the colloidal theory to describe forces and energy interactions of colloidal complexes in the water and those formed during filtration run in direct filtration. Many interactions of particle energy profiles between colloidal surfaces for three geometries are presented here in: spherical, plate and cylindrical; and four surface interactions arrangements: two cylinders, two spheres, two plates and a sphere and a plate. Two different situations were analyzed, before and after electrostatic destabilization by action of the alum sulfate as coagulant in water studies samples prepared with kaolin. In the case were used mathematical modeling by extended DLVO theory (from the names: Derjarguin-Landau-Verwey-Overbeek) or XDLVO, which include traditional approach of the electric double layer (EDL), surfaces attraction forces or London-van der Waals (LvdW), esteric forces and hydrophobic forces, additionally considering another forces in colloidal system, like molecular repulsion or Born Repulsion and Acid-Base (AB) chemical function forces from Lewis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hymenoptera exhibit an incredible diversity of phenotypes, the result of similar to 240 million years of evolution and the primary subject of more than 250 years of research. Here we describe the history, development, and utility of the Hymenoptera Anatomy Ontology (HAO) and its associated applications. These resources are designed to facilitate accessible and extensible research on hymenopteran phenotypes. Outreach with the hymenopterist community is of utmost importance to the HAO project, and this paper is a direct response to questions that arose from project workshops. In a concerted attempt to surmount barriers of understanding, especially regarding the format, utility, and development of the HAO, we discuss the roles of homology, "preferred terms", and "structural equivalency". We also outline the use of Universal Resource Identifiers (URIs) and posit that they are a key element necessary for increasing the objectivity and repeatability of science that references hymenopteran anatomy. Pragmatically, we detail a mechanism (the "URI table") by which authors can use URIs to link their published text to the HAO, and we describe an associated tool (the "Analyzer") to derive these tables. These tools, and others, are available through the HAO Portal website (http://portal.hymao.org). We conclude by discussing the future of the HAO with respect to digital publication, cross-taxon ontology alignment, the advent of semantic phenotypes, and community-based curation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Further advances in magnetic hyperthermia might be limited by biological constraints, such as using sufficiently low frequencies and low field amplitudes to inhibit harmful eddy currents inside the patient's body. These incite the need to optimize the heating efficiency of the nanoparticles, referred to as the specific absorption rate (SAR). Among the several properties currently under research, one of particular importance is the transition from the linear to the non-linear regime that takes place as the field amplitude is increased, an aspect where the magnetic anisotropy is expected to play a fundamental role. In this paper we investigate the heating properties of cobalt ferrite and maghemite nanoparticles under the influence of a 500 kHz sinusoidal magnetic field with varying amplitude, up to 134 Oe. The particles were characterized by TEM, XRD, FMR and VSM, from which most relevant morphological, structural and magnetic properties were inferred. Both materials have similar size distributions and saturation magnetization, but strikingly different magnetic anisotropies. From magnetic hyperthermia experiments we found that, while at low fields maghemite is the best nanomaterial for hyperthermia applications, above a critical field, close to the transition from the linear to the non-linear regime, cobalt ferrite becomes more efficient. The results were also analyzed with respect to the energy conversion efficiency and compared with dynamic hysteresis simulations. Additional analysis with nickel, zinc and copper-ferrite nanoparticles of similar sizes confirmed the importance of the magnetic anisotropy and the damping factor. Further, the analysis of the characterization parameters suggested core-shell nanostructures, probably due to a surface passivation process during the nanoparticle synthesis. Finally, we discussed the effect of particle-particle interactions and its consequences, in particular regarding discrepancies between estimated parameters and expected theoretical predictions. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. [http://dx.doi. org/10.1063/1.4739533]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

LA-MC-ICP-MS U-Pb zircon dating was performed on syntectonic, early post-collisional granitic and associated mafic rocks that are intrusive in the Brusque Metamorphic Complex and in the Florianopolis Batholith, major tectonic domains separated by the Neoproterozoic Major Gercino Shear Zone (MGSZ) in south Brazil. The inferred ages of magmatic crystallization are consistent with field relationships, and show that the syntectonic granites from both domains are similar, with ages around 630-620 Ma for high-K calc-alkaline metaluminous granites and ca. 610 Ma for slightly peraluminous granites. Although ca. 650 Ma inherited zircon components are identified in granites from both domains, important contrasts on the crustal architecture in each domain are revealed by the patterns of zircon inheritance, indicating different crustal sources for the granites in each domain. The granites from the southern domain (Floriandpolis Batholith) have essentially Neoproterozoic (650-700 Ma and 900-950 Ma) inheritance; with a single 2.0-2.2 Ga inherited age obtained in the peraluminous Mariscal Granite. In the northern Brusque Metamorphic Complex, the metaluminous Rio Pequeno Granite and associated mafic rocks have scarce inherited cores with ages around 1.65 Ga, whereas the slightly peraluminous Serra dos Macacos Granite has abundant Paleoproterozoic (1.8-2.2 Ga) and Archean (2.9-3.4 Ga) inherited zircons. Our results are consistent with the hypothesis that the MGSZ separates domains with distinct geologic evolution; however, the contemporaneity of 630-610 Ma granitic magmatism with similar structural and geochemical patterns on both sides of this major shear zone indicates that these domains were already part of a single continental mass at 630 Ma, reinforcing the post-collisional character of these granites. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective. To test the hypothesis that the difference in the coefficient of thermal contraction of the veneering porcelain above (˛liquid) and below (˛solid) its Tg plays an important role in stress development during a fast cooling protocol of Y-TZP crowns. Methods. Three-dimensional finite element models of veneered Y-TZP crowns were developed. Heat transfer analyses were conducted with two cooling protocols: slow (group A) and fast (groups B–F). Calculated temperatures as a function of time were used to determine the thermal stresses. Porcelain ˛solid was kept constant while its ˛liquid was varied, creating different ˛/˛solid conditions: 0, 1, 1.5, 2 and 3 (groups B–F, respectively). Maximum ( 1) and minimum ( 3) residual principal stress distributions in the porcelain layer were compared. Results. For the slowly cooled crown, positive 1 were observed in the porcelain, orientated perpendicular to the core–veneer interface (“radial” orientation). Simultaneously, negative 3 were observed within the porcelain, mostly in a hoop orientation (“hoop–arch”). For rapidly cooled crowns, stress patterns varied depending on ˛/˛solid ratios. For groups B and C, the patterns were similar to those found in group A for 1 (“radial”) and 3 (“hoop–arch”). For groups D–F, stress distribution changed significantly, with 1 forming a “hoop-arch” pattern while 3 developed a “radial” pattern. Significance. Hoop tensile stresses generated in the veneering layer during fast cooling protocols due to porcelain high ˛/˛solid ratio will facilitate flaw propagation from the surface toward the core, which negatively affects the potential clinical longevity of a crown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural properties of model membranes, such as lipid vesicles, may be investigated through the addition of fluorescent probes. After incorporation, the fluorescent molecules are excited with linearly polarized light and the fluorescence emission is depolarized due to translational as well as rotational diffusion during the lifetime of the excited state. The monitoring of emitted light is undertaken through the technique of time-resolved fluorescence: the intensity of the emitted light informs on fluorescence decay times, and the decay of the components of the emitted light yield rotational correlation times which inform on the fluidity of the medium. The fluorescent molecule DPH, of uniaxial symmetry, is rather hydrophobic and has collinear transition and emission moments. It has been used frequently as a probe for the monitoring of the fluidity of the lipid bilayer along the phase transition of the chains. The interpretation of experimental data requires models for localization of fluorescent molecules as well as for possible restrictions on their movement. In this study, we develop calculations for two models for uniaxial diffusion of fluorescent molecules, such as DPH, suggested in several articles in the literature. A zeroth order test model consists of a free randomly rotating dipole in a homogeneous solution, and serves as the basis for the study of the diffusion of models in anisotropic media. In the second model, we consider random rotations of emitting dipoles distributed within cones with their axes perpendicular to the vesicle spherical geometry. In the third model, the dipole rotates in the plane of the of bilayer spherical geometry, within a movement that might occur between the monolayers forming the bilayer. For each of the models analysed, two methods are used by us in order to analyse the rotational diffusion: (I) solution of the corresponding rotational diffusion equation for a single molecule, taking into account the boundary conditions imposed by the models, for the probability of the fluorescent molecule to be found with a given configuration at time t. Considering the distribution of molecules in the geometry proposed, we obtain the analytical expression for the fluorescence anisotropy, except for the cone geometry, for which the solution is obtained numerically; (II) numerical simulations of a restricted rotational random walk in the two geometries corresponding to the two models. The latter method may be very useful in the cases of low-symmetry geometries or of composed geometries.