59 resultados para Spinal trigeminal nucleus
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Object. Over the past few decades, various authors have performed open or stereotactic trigeminal nucleotractotomy for the treatment of neuropathic facial pain resistant to medical treatment. Stereotactic procedures can be performed percutaneously under local anesthesia, allowing intraoperative neurological examination as a method for target refinement. However, blind percutaneous procedures in the region of the atlantooccipital transition carry a considerably high risk of vascular injuries that may bring prohibitive neurological deficit or even death. To avoid such complications, the authors present the first clinical use of microendoscopy to assist percutaneous radiofrequency trigeminal nucleotractotomy. The aim of this article is to demonstrate intradural microendoscopic visualization of the medulla oblongata through an atlantooccipital percutaneous approach. Methods. The authors present a case of severe postherpetic facial neuralgia in a patient who underwent the procedure and had satisfactory results. Stereotactic computational image planning for targeting the spinal trigeminal tract and nucleus in the posterolateral medulla was performed, allowing for an accurate percutaneous approach. immediately before radiofrequency electrode insertion, a tine endoscope was introduced to visualize the structures in the cisterna magna. Results. Microendoscopic visualization offered clear identification of the pial surface of the medulla oblongata and its blood vessels, the arachnoid membrane, cranial nerve rootlets and their entry zone, and larger vessels such as the vertebral arteries and the branches of the posterior inferior cerebellar artery. Conclusions. The initial application of this technique suggests that percutaneous microendoscopy may be useful for particular manipulation of the medulla oblongata, increasing the safety of the procedure and likely improving its effectiveness. (DOI: 10.3171/2011.8.JNS11618)
Resumo:
The symptoms of lumbar disc herniation, such as low back pain and sciatica, have been associated with local release of cytokines following the inflammatory process induced by the contact of the nucleus pulposus (NP) with the spinal nerve. Using an animal experimental model of intervertebral disc herniation and behavioral tests to evaluate mechanical (electronic von Frey test) and thermal (Hargreaves Plantar test) hyperalgesia in the hind paw of rats submitted to the surgical model, this study aimed to detect in normal intervertebral disc the cytokines known to be involved in the mechanisms of inflammatory hyperalgesia, to observe if previous exposure of the intervertebral disc tissue to specific antibodies could affect the pain behavior (mechanical and thermal hyperalgesia) induced by the NP, and to observe the influence of the time of contact of the NP with the fifth lumbar dorsal root ganglion (L5-DRG) in the mechanical and thermal hyperalgesia. The cytokines present at highest concentrations in the rat NP were TNF-alpha, IL-1 beta and CINC-1. Rats submitted to the disc herniation experimental model, in which a NP from the sacrococcygeal region is deposited over the right L5-DRG, showed increased mechanical and thermal hyperalgesia that lasted at least 7 weeks. When the autologous NP was treated with antibodies against the three cytokines found at highest concentrations in the NP (TNF-alpha, IL-1 beta and CINC-1), there was decrease in both mechanical and thermal hyperalgesia in different time points, suggesting that each cytokine may be important for the hyperalgesia in different steps of the inflammatory process. The surgical remotion of the NP from herniated rats 1 week after the implantation reduced the hyperalgesia to the level similar to the control group. This reduction in the hyperalgesia was also observed in the group that had the NP removed 3 weeks after the implantation, although the intensity of the hyperalgesia did not decreased totally. The removal of the NP after 5 weeks did not changed the hyperalgesia observed in the hind paw, which suggests that the longer the contact of the NP with the DRG, the greater is the possibility of development of chronic pain. Together our results indicate that specific cytokines released during the inflammatory process induced by the herniated intervertebral disc play fundamental role in the development of the two modalities of hyperalgesia (mechanical and thermal) and that the maintenance of this inflammation may be the most important point for the chronification of the pain.
Resumo:
We investigated the cardiovascular effects of the microinjection of L-proline (L-Pro) into the third ventricle (3V) and its peripheral mechanisms. Different doses of L-Pro into the 3V caused dose-related pressor and bradycardiac responses. The pressor response to L-Pro injected into the 3V was potentiated by intravenous pretreatment with the ganglion blocker pentolinium (5 mg/kg), thus excluding any significant involvement of the sympathetic nervous system. Because the response to the microinjection of L-Pro into the 3V was blocked by intravenous pretreatment with the V1-vasopressin receptor antagonist dTyr(CH2)5(Me)AVP (50 mu g/kg), it is suggested that these cardiovascular responses are mediated by a vasopressin release. The pressor response to the microinjection of L-Pro into the 3V was found to be mediated by circulating vasopressin, so, given that the paraventricular nucleus of the hypothalamus (PVN) is readily accessible from the 3V, we investigated whether the PVN could be a site of action for the L-Pro microinjected in the 3V. The microinjection of L-Pro (0.033 mu moles/0.1 mu l) into the PVN caused cardiovascular responses similar to those of injection of the 3V and were also shown to be mediated by vasopressin release. In conclusion, these results show that the microinjection of L-Pro into the 3V causes pressor and bradycardiac responses that could involve stimulation of the magnocellular cells of the PVN and release of vasopressin into the systemic circulation. Also, because the microinjection of L-Pro into the PVN caused a pressor response, this is the first evidence of cardiovascular effects caused by its injection in a supramedullary structure. (c) 2012 Wiley Periodicals, Inc.
Resumo:
The deactivation of the inhibitory mechanisms with injections of moxonidine (alpha(2)-adrenoceptor/imidazoline receptor agonist) into the lateral parabrachial nucleus (LPBN) increases hypertonic NaCl intake by intra- or extracellular dehydrated rats. In the present study, we investigated the changes in the urinary sodium and volume, sodium balance, and plasma vasopressin and oxytocin in rats treated with intragastric (i.g.) 2 M NaCl load (2 ml/rat) combined with injections of moxonidine into the LPBN. Male Holtzman rats (n=5-12/group) with stainless steel cannulas implanted bilaterally into LPBN were used. Bilateral injections of moxonidine (0.5 nmol/0.2 mu l) into the LPBN decreased i.g. 2 M NaCIinduced diuresis (4.6 +/- 0.7 vs. vehicle: 7.4 +/- 0.6 ml/120 min) and natriuresis (1.65 +/- 0.29 vs. vehicle: 2.53 +/- 0.17 mEq/120 min), whereas the previous injection of the alpha(2)-adrenoceptor antagonist RX 821002 (10 nmol/0.2 mu l) into the LPBN abolished the effects of moxonidline. Moxonidine injected into the LPBN reduced i.g. 2 M NaCl-induced increase in plasma oxytocin and vasopressin (14.6 +/- 2.8 and 2.2 +/- 0.3 vs. vehicle: 25.7 +/- 7 and 4.3 +/- 0.7 pg/ml, respectively). Moxonidine injected into the LPBN combined with i.g. 2 M NaCl also increased 0.3 M NaCl intake (7.5 +/- 1.7 vs. vehicle: 0.5 +/- 0.2 mEq/2 h) and produced positive sodium balance (2.3 +/- 1.4 vs. vehicle: -1.2 +/- 0.4 mEq/2 h) in rats that had access to water and NaCl. The present results show that LPBN alpha(2)-adrenoceptor activation reduces renal and hormonal responses to intracellular dehydration and increases sodium and water intake, which facilitates sodium retention and body fluid volume expansion. (C) 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
The periaqueductal gray area (PAG) is a mesencephalic area involved in cardiovascular modulation. Glutamate (L-Glu) is an abundant excitatory amino acid in the central nervous system (CNS) and is present in the rat PAG. Moreover, data in the literature indicate its involvement in central blood pressure control. Here we report on the cardiovascular effects caused by microinjection of L-Glu into the dorsomedial PAG (dmPAG) of rats and the glutamatergic receptors as well as the peripheral mechanism involved in their mediation. The microinjection of L-Glu into the dmPAG of unanesthetized rats evoked dose-related pressor and bradycardiac responses. The cardiovascular response was significantly reduced by pretreatment of the dmPAG with a glutamatergic M-methyl-D-aspartate (NMDA) receptor antagonist (LY235959) and was not affected by pretreatment with a non-NMDA receptor antagonist (NBQX), suggesting a mediation of that response by the activation of NMDA receptors. Furthermore, the pressor response was blocked by pretreatment with the ganglion blocker pentolinium (5 mg/kg, intravenously), suggesting an involvement of the sympathetic nervous system in this response. Our results indicate that the microinjection of L-Glu into the dmPAG causes sympathetic-mediated pressor responses in unanesthetized rats, which are mediated by glutamatergic NMDA receptors in the dmPAG. (c) 2012 Wiley Periodicals, Inc.
Resumo:
The medial amygdaloid nucleus (MeA) is a sub-region of the amygdaloid complex that has been described as participating in food intake regulation. Serotonin has been known to play an important role in appetite and food intake regulation. Moreover, serotonin 5-HT2C and 5-HT1A receptors appear to be critical in food intake regulation. We investigated the role of the serotoninergic system in the MeA on feeding behavior regulation in rats. The current study examined the effects on feeding behavior regulation of the serotonin reuptake inhibitor, zimelidine, administered directly into the MeA or given systemically, and the serotoninergic receptors mediating its effect. Our results showed that microinjection of zimelidine (0.2, 2 and 20 nmol/100 nL) into the MeA evoked dose dependent hypophagic effects in fasted rats. The selective 5-HT1A receptor antagonist WAY-100635 (18.5 nmol/100 nL) or the 5-HT1B receptor antagonist SB-216641 microinjected bilaterally into the MeA did not change the hypophagic effect evoked by local MeA zimelidine treatment. However, microinjection of the selective 5-HT2C receptor antagonist SB-242084 (10 nmol/100 nL) was able to block the hypophagic effect of zimelidine. Moreover, microinjection of the 5-HT2C receptor antagonist SB-242084 into the MeA also blocked the hypophagic effect caused by zimelidine administered systemically. These results suggest that MeA 5-HT2C receptors modulate the hypophagic effect caused by local MeA administration as well as by systemic zimelidine administration. Furthermore, 5-HT2C into the MeA could be a potential target for systemic administration of zimelidine. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The acetic acid and phenyl-p-benzoquinone are easy and fast screening models to access the activity of novel candidates as analgesic drugs and their mechanisms. These models induce a characteristic and quantifiable overt pain-like behavior described as writhing response or abdominal contortions. The knowledge of the mechanisms involved in the chosen model is a crucial step forward demonstrating the mechanisms that the candidate drug would inhibit because the mechanisms triggered in that model will be addressed. Herein, it was investigated the role of spinal mitogen-activated protein (MAP) kinases ERK (extracellular signal-regulated kinase), JNK (Jun N-terminal Kinase) and p38, PI3K (phosphatidylinositol 3-kinase) and microglia in the writhing response induced by acetic acid and phenyl-p-benzoquinone, and flinch induced by formalin in mice. Acetic acid and phenyl-p-benzoquinone induced significant writhing response over 20 min. The nociceptive response in these models were significantly and in a dose-dependent manner reduced by intrathecal pre-treatment with ERK (PD98059), JNK (SB600125), p38 (SB202190) or PI3K (wortmannin) inhibitors. Furthermore, the co-treatment with MAP kinase and PI3K inhibitors, at doses that were ineffective as single treatment, significantly inhibited acetic acid- and phenyl-p-benzoquinone-induced nociception. The treatment with microglia inhibitors minocycline and fluorocitrate also diminished the nociceptive response. Similar results were obtained in the formalin test. Concluding. MAP kinases and PI3K are important spinal signaling kinases in acetic acid and phenyl-p-benzoquinone models of overt pain-like behavior and there is also activation of spinal microglia indicating that it is also important to determine whether drugs tested in these models also modulate such spinal mechanisms. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
OBJECTIVES: This prospective, randomized, experimental study with rats aimed to investigate the influence of general treatment strategies on the motor recovery of Wistar rats with moderate contusive spinal cord injury. METHODS: A total of 51 Wistar rats were randomized into five groups: control, maze, ramp, runway, and sham (laminectomy only). The rats underwent spinal cord injury at the T9-T10 levels using the NYU-Impactor. Each group was trained for 12 minutes twice a week for two weeks before and five weeks after the spinal cord injury, except for the control group. Functional motor recovery was assessed with the Basso, Beattie, and Bresnahan Scale on the first postoperative day and then once a week for five weeks. The animals were euthanized, and the spinal cords were collected for histological analysis. RESULTS: Ramp and maze groups showed an earlier and greater functional improvement effect than the control and runway groups. However, over time, unexpectedly, all of the groups showed similar effects as the control group, with spontaneous recovery. There were no histological differences in the injured area between the trained and control groups. CONCLUSION: Short-term benefits can be associated with a specific training regime; however, the same training was ineffective at maintaining superior long-term recovery. These results might support new considerations before hospital discharge of patients with spinal cord injuries.
Resumo:
The superior colliculus (SC) is responsible for sensorimotor transformations required to direct gaze toward or a way from unexpected, biologically salient events. Significant changes in the external world are signaled to SC through primary multisensory afferents, spatially organized according to a retinotopic topography. For animals, where anunexpected event could indicate the presence of either predator or prey, early decisions to approach or avoid are particularly important. Rodents' ecology dictates predators are most often detected initially as movements in upper visual field (mapped in medial SC), while appetitive stimuli are normally found in lower visual field (mapped in lateral SC). Our purpose was to exploit this functional segregation to reveal neural sites that can bias or modulate initial approach or avoidance responses. Small injections of Fluoro-Gold were made into medial or lateral sub-regions of intermediate and deep layers of SC (SCm/SCl). A remarkable segregation of input to these two functionally defined areas was found. (i) There were structures that projected only to SCm (e.g., specific cortical areas, lateral geniculate and suprageniculate thalamic nuclei, ventromedial and premammillary hypothalamic nuclei, and several brain-stem areas) or SCl (e.g., primary somatosensory cortex representing upper body parts and vibrissae and parvicellular reticular nucleus in the brainstem). (ii) Other structures projected to both SCm and SCl but from topographically segregated populations of neurons (e.g., zona incerta and substantia nigra pars reticulata). (iii) There were a few brainstem areas in which retrogradely labeled neurons were spatially overlapping (e.g., pedunculopontine nucleus and locus coeruleus). These results indicate significantly more structures across the rat neuraxis are in a position to modulate defense responses evoked from SCm, and that neural mechanisms modulating SC-mediated defense or appetitive behavior are almost entirely segregated.
Resumo:
The zona incerta (ZI) is a subthalamic nucleus connected to several structures, some of them known to be involved with antinociception. The 21 itself may be involved with both antinociception and nociception. The antinociceptive effects of stimulating the ZI with glutamate using the rat tail-flick test and a rat model of incision pain were examined. The effects of intraperitoneal antagonists of acetylcholine, noradrenaline, serotonin, dopamine, or opioids on glutamate-induced antinociception from the ZI in the tail-flick test were also evaluated. The injection of glutamate (7 mu g/0.25 mu l) into the ZI increased tail-flick latency and inhibited post-incision pain, but did not change the animal performance in a Rota-rod test. The injection of glutamate into sites near the ZI was non effective. The glutamate-induced antinociception from the ZI did not occur in animals with bilateral lesion of the dorsolateral funiculus, or in rats treated intraperitoneally with naloxone (1 and 2 m/kg), methysergide (1 and 2 m/kg) or phenoxybenzamine (2 m/kg), but remained unchanged in rats treated with atropine, mecamylamine, or haloperidol (all given at doses of 1 and 2 m/kg). We conclude that the antinociceptive effect evoked from the ZI is not due to a reduced motor performance, is likely to result from the activation of a pain-inhibitory mechanism that descends to the spinal cord via the dorsolateral funiculus, and involves at least opioid, serotonergic and a-adrenergic mechanisms. This profile resembles the reported effects of these antagonists on the antinociception caused by stimulating the periaqueductal gray or the pedunculopontine tegmental nucleus. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Excited states of the N = Z = 33 nucleus As-66 have been populated in a fusion-evaporation reaction and studied using gamma-ray spectroscopic techniques. Special emphasis was put into the search for candidates for the T = 1 states. A new 3(+) isomer has been observed with a lifetime of 1.1(3) ns. This is believed to be the predicted oblate shape isomer. The excited levels are discussed in terms of the shell model and of the complex excited Vampir approaches. Coulomb energy differences are determined from the comparison of the T = 1 states with their analog partners. The unusual behavior of the Coulomb energy differences in the A = 70 mass region is explained through different shape components (oblate and prolate) within the members of the same isospin multiplets. This breaking of the isospin symmetry is attributed to the correlations induced by the Coulomb interaction.
Resumo:
Leao RM, Li S, Doiron B, Tzounopoulos T. Diverse levels of an inwardly rectifying potassium conductance generate heterogeneous neuronal behavior in a population of dorsal cochlear nucleus pyramidal neurons. J Neurophysiol 107: 3008-3019, 2012. First published February 29, 2012; doi:10.1152/jn.00660.2011.-Homeostatic mechanisms maintain homogeneous neuronal behavior among neurons that exhibit substantial variability in the expression levels of their ionic conductances. In contrast, the mechanisms, which generate heterogeneous neuronal behavior across a neuronal population, remain poorly understood. We addressed this problem in the dorsal cochlear nucleus, where principal neurons exist in two qualitatively distinct states: spontaneously active or not spontaneously active. Our studies reveal that distinct activity states are generated by the differential levels of a Ba2+-sensitive, inwardly rectifying potassium conductance (K-ir). Variability in K-ir maximal conductance causes variations in the resting membrane potential (RMP). Low K-ir conductance depolarizes RMP to voltages above the threshold for activating subthreshold-persistent sodium channels (Na-p). Once Na-p channels are activated, the RMP becomes unstable, and spontaneous firing is triggered. Our results provide a biophysical mechanism for generating neural heterogeneity, which may play a role in the encoding of sensory information.
Resumo:
Knowledge of the He-3(He-3,2p)He-4 reaction is important for understanding stellar burning and solar neutrino production. Previous measurements have found a surprisingly large rise in the cross section at low energies that could be due to a low-energy resonance in the He-3 + He-3 (Be-6) system or electron screening. In the Be-6 nucleus, however, no excited states have been observed above the first 2(+) state at E (x) = 1.67 MeV up to 23 MeV, even though several are expected. The H-2(Be-7,H-3)Be-6 reaction has been studied for the first time to search for resonances in the Be-6 nucleus that may affect our understanding of the He-3(He-3,2p)He-4 reaction. A 100-MeV radioactive Be-7 beam from the Holifield Radioactive Ion Beam Facility (HRIBF) was used to bombard CD2 targets, and tritons were detected by using the silicon detector array (SIDAR). A combination of reaction mechanisms appears to be necessary to explain the observed triton energy spectrum.
Resumo:
Aim: This study examines if injection of cobalt chloride (CoCl2) or antagonists of muscarinic cholinergic (atropine), mu(1)-opioid (naloxonazine) or 5-HT1 serotonergic (methiothepin) receptors into the dorsal or ventral portions of the anterior pretectal nucleus (APtN) alters the antinociceptive effects of stimulating the retrosplenial cortex (RSC) in rats. Main method: Changes in the nociceptive threshold were evaluated using the tail flick or incision pain tests in rats that were electrically stimulated at the RSC after the injection of saline, CoCl2 (1 mM, 0.10 mu L) or antagonists into the dorsal or ventral APtN. Key findings: The injection of CoCl2, naloxonazine (5 mu g/0.10 mu L) or methiothepin (3 mu g/0.10 mu L) into the dorsal APtN reduced the stimulation-produced antinociception from the RSC in the rat tail flick test. Reduction of incision pain was observed following stimulation of the RSC after the injection of the same substances into the ventral APtN. The injection of atropine (10 ng/0.10 mu L) or ketanserine (5 mu g/0.10 mu L) into the dorsal or ventral APtN was ineffective against the antinociception resulting from RSC stimulation. Significance: mu(1)-opioid- and 5-HT1-expressing neurons and cell processes in dorsal and ventral APtN are both implicated in the mediation of stimulation-produced antinociception from the RSC in the rat tail flick and incision pain tests, respectively. (c) 2012 Elsevier Inc. All rights reserved.
Resumo:
Chagas' disease is a protozoosis caused by Trypanosoma cruzi that frequently shows severe chronic clinical complications of the heart or digestive system. Neurological disorders due to T. cruzi infection are also described in children and immunosuppressed hosts. We have previously reported that IL-12p40 knockout (KO) mice infected with the T. cruzi strain Sylvio X10/4 develop spinal cord neurodegenerative disease. Here, we further characterized neuropathology, parasite burden and inflammatory component associated to the fatal neurological disorder occurring in this mouse model. Forelimb paralysis in infected IL-12p40KO mice was associated with 60% (p<0.05) decrease in spinal cord neuronal density, glutamate accumulation (153%, p<0.05) and strong demyelization in lesion areas, mostly in those showing heavy protein nitrosylation, all denoting a neurotoxic degenerative profile. Quantification of T. cruzi 18S rRNA showed that parasite burden was controlled in the spinal cord of WT mice, decreasing from the fifth week after infection, but progressive parasite dissemination was observed in IL-12p40KO cords concurrent with significant accumulation of the astrocytic marker GFAP (317.0%, p<0.01) and 8-fold increase in macrophages/microglia (p<0.01), 36.3% (p<0.01) of which were infected. Similarly, mRNA levels for CD3, TNF-alpha, IFN-gamma, iNOS, IL-10 and arginase I declined in WT spinal cords about the fourth or fifth week after infection, but kept increasing in IL-12p40KO mice. Interestingly, compared to WT tissue, lower mRNA levels for IFN-gamma were observed in the IL-12p40KO spinal cords up to the fourth week of infection. Together the data suggest that impairments of parasite clearance mechanisms in IL-12p40KO mice elicit prolonged spinal cord inflammation that in turn leads to irreversible neurodegenerative lesions.