6 resultados para Spherical silica particles

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The cationic dyes 9-aminoacridine (9AA) and safranine (Sf) were entrapped into silica spheres of about 0.2 mu m diameter prepared by modified Stober method. The fluorescent materials are investigated by steady-state and time-resolved emission, in addition of confocal fluorescence microscopy. Silica particles containing 9-aminoacridine (SP9AA) and safranine (SPSf or both dyes (SPSf9AA) are emissive particles. When both dyes are present in the same particle but loaded in sequential stages 9AA emission is quenched as a consequence of energy transfer from 9AA (donor) to Sf (acceptor). This result suggests that particle growing processes where the acceptor is incorporated first into the core do not prevent donor/acceptor pairs to be close due to an overlay of the concentration gradients of both dyes in a radial core-shell like distribution. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A new betadiketonate ligand displaying a trimethoxysilyl group as grafting function and a diketone moiety as complexing site (TTA-Si = 4,4,4-trifluoro-2-(3-trimethoxysilyl)propyl)-1-3-butanedione (C4H3S)COCH[(CH2)(3)Si(OCH3)(3)]COCF3) and its highly luminescent europium(III) complex [Eu(TTA-Si)(3)] have been synthesized and fully characterized. Luminescent silica-based hybrids have been prepared as well with this new complex grafted on the surface of dense silica nanoparticles (28 +/- 3 nm) or on mesoporous silica particles. The covalent bonding of Eu(TTA-Si)(3) inside the core of uniform silica nanoparticles (40 +/- 5 nm) was also achieved. Luminescence properties are discussed in relation to the europium chemical environment involved in each of the three hybrids. The general methodology proposed allowed high grafting ratios and overcame chelate release and tendency to agglomeration, and it could be applied to any silica matrix (in the core or at the surface, nanosized or not, dense or mesoporous) and therefore numerous applications such as luminescent markers and luminophors could be foreseen.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, mesoporous titania is prepared by templating latex sphere arrays with four different sphere diameters at the micrometric scale (phi > 1 mu m). The mesoporous titania homogeneously covers the latex spheres and substrate, forming a thin coating characterized by N-2 adsorption isotherm, small angle X-rays scattering, atomic force, field emission and transmission electronic microscopies. Mesoporous titania has been templated into different shapes such as hollow particles and monoliths according to the amount of sol used to fill the voids of the close packed latex spheres. Titania topography strongly depends on the adsorption of polymeric segments over latex spheres surface, which could be decreased by changing the dimensions of latex spheres (phi = 9.5 mu m) generating a lamellar architecture. Thus, micrometric latex sphere arrays can be used to achieve new surface patterns for mesoporous materials via a fast and inexpensive chemical route for construction of functional devices in different technological fields such as energy conversion, inclusion chemistry and biomaterials. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polyvinylpyrollidone (PVP)-capped platinum nanoparticles (NPs) are found to change shape from spherical to flat when deposited on mesoporous silica substrates (SBA-15). Transmission electron microscopy (TEM), small-angle X-ray scattering (SAXS), and extended X-ray absorption fine structure (EXAFS) analyses are used in these studies. The SAXS results indicate that, after deposition, the 2 nm NPs have an average gyration radius 22% larger than in solution, while the EXAFS measurements indicate a decrease in first neighbor co-ordination number from 9.3 to 7.4. The deformation of these small capped NPs is attributed to interactions with the surface of the SBA-15 support, as evidenced by X-ray absorption near-edge structure (XANES).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We studied the low energy motion of particles in the general covariant. version of Horava-Lifshitz gravity proposed by Horava and Melby-Thompson. Using a scalar field coupled to gravity according to the minimal substitution recipe proposed by da Silva and taking the geometrical optics limit, we could write an effective relativistic metric for a general solution. As a result, we discovered that the equivalence principle is not in general recovered at low energies, unless the spatial Laplacian of A vanishes. Finally, we analyzed the motion on the spherical symmetric solution proposed by Horava and Melby-Thompson, where we could find its effective line element and compute spin-0 geodesics. Using standard methods we have shown that such an effective metric cannot reproduce Newton's gravity law even in the weak gravitational field approximation. (C) 2011 Elsevier B.V All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new biomaterial, based on silica organofunctionalized with p-phenylenediamine (p-PDA) and the enzyme peroxidase, was used in the development of an enzymatic solid-phase reactor. The analytical techniques used in the characterization showed that the organic ligand was incorporated into the silica matrix. Thus, the silica modified with p-PDA allowed the incorporation of peroxidase by the electrostatic interaction between the carboxylic groups present in the enzyme molecules and the amino groups attached to the silica. The enzymatic solid-phase reactor was used for chemical oxidation of phenols in 1, 4-benzoquinone that was then detected by chronoamperometry. The system allowed the analysis of hydroquinone with a detection limit of 83.6 nmol L-1. Thus, the new material has potential in the determination of phenolic compounds river water samples.