26 resultados para Sorption isotherms
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Brazil is considered one of the largest producers and consumers of tropical fruits. Green coconut (Cocos nucifera L.) stands out not only for its production and consumption, but also for the high amount of waste produced by coconut water industry and in natura consumption. Therefore, there is a need for utilization of this by-product. This study aims to study the adsorption isotherms of green coconut pulp and determine its isosteric heat of sorption. The adsorption isotherms at temperatures of 30, 40, 50, 60, and 70 °C were analyzed, and they exhibit type III behavior, typical of sugar rich foods. The experimental results of equilibrium moisture content were correlated by models present in the literature. The Guggenheim, Anderson and De Boer (GAB) model proved particularly good overall agreement with the experimental data. The heat of sorption determined from the adsorption isotherms increased with the decrease in moisture content. The heat of sorption is considered as indicative of intermolecular attractive forces between the sorption sites and water vapor, which is an important factor to predict the shelf life of dried products.
Resumo:
The aim of this study was to investigate the improvement of the aqueous solubility of carbamazepine by preparing microstructured ternary solid dispersions using polyoxylglycerides and colloidal silicon dioxide. Microstructured solid dispersions were obtained in a spray dryer. The influence of the spray drying conditions on the properties of the microparticles was investigated using a full 3(2) factorial design in which the factors studied were the silicon dioxide content and the air outlet temperature. The microparticles were thoroughly characterized in terms of yield, solubility, angle of repose, particle size, drug content, moisture content, sorption isotherms, morphology, thermal behavior, infrared spectroscopy and crystallinity. The dissolution rates of carbamazepine and of the microparticles in water were also determined. In general, the microstructured solid dispersions demonstrated good yield, adequate flow and moisture content (<3%), drug recovery (91.98 to 100.22%) and particle size (<142.90 mu m). Thermal and infrared analysis showed that there was no drug interaction during the process. On the other hand, the results of X-ray diffraction evidenced a partial polymorphic modification of carbamazepine. The solubility and dissolution rates of carbamazepine were remarkably improved. Therefore, the results confirm the high potential of the spray drying technique to obtain microstructured ternary solid dispersions. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In this work, it was investigated the effect of different moisture contents on PVA-gelatin films by means of dielectric properties, infrared spectroscopy, microwave response and gravimetric method. The films were elaborated from a blend of gelatin and PVA, with 0 and 25 % glycerol. The sorption isotherms were determined by gravimetric methods, at 25 A degrees C. A capacimeter was used for dielectric measurements, and a device called SOLFAN setup was used for microwave measurements. The sorption isotherms were markedly affected by the glycerol content and relative humidity, due to the hygroscopic nature of the films. The dielectric constant and the microwave response signal were also strongly affected by the moisture and glycerol content in the films. Finally, Infrared spectra showed some changes in the amide peak positions, attributed to the modifications in the interactions between the macromolecules. The behaviors obtained in this work were explained on the basis the way the water enters in the film matrix.
Resumo:
The removal of Pb2+ from aqueous solution by two Brazilian rocks that contain zeolites-amygdaloidal dacite (ZD) and sandstone (ZS)-was examined by batch experiments. ZD contains mordenite and ZS, stilbite. The effects of contact time, concentration of metal in solution and capacity of Na+ to recover the adsorbed metals were evaluated at room temperature (20A degrees C). The sorption equilibrium was reached in the 30 min of agitation time. Both materials removed 100% of Pb2+ from solutions at concentrations up to 50 mg/L, and at concentrations larger than 100 mg/L of Pb2+, the adsorption capacity of sandstone was more efficient than that of amygdaloidal dacite due to the larger quantities and the type of zeolites (stilbite) in the cement of this rock. All adsorbed Pb2+ was easily replaced by Na+ in both samples. The analysis of the adsorption models using nonlinear regression revealed that the Sips and the Freundlich isotherms provided the best fit for the ZS and ZD experimental data, respectively, indicating the heterogeneous adsorption surfaces of these zeolites.
Resumo:
Objectives: To evaluate the effect of additives on the water sorption characteristics of Bis-GMA based copolymers and composites containing TEGDMA, CH(3)Bis-GMA or CF(3)Bis-GMA. Material and methods: Fifteen experimental copolymers and corresponding composites were prepared combining Bis-GMA and TEGDMA, CH(3)Bis-GMA or CF(3)Bis-GMA, with aldehyde or diketone (24 and 32 mol%) totaling 30 groups. For composites, barium aluminosilicate glass and pyrogenic silica was added to comonomer mixtures. Photopolymerization was effected by 0.2 wt% each of camphorquinone and N,N-dimethyl-p-toluidine. Specimen densities in dry and water saturated conditions were obtained by Archimedes' method. Water sorption and desorption were evaluated in a desorption-sorption-desorption cycle. Water uptake (%WU), water desorption (%WD), equilibrium solubility (ES; mu g/mm(3)), swelling (f) and volume increase (%V) were calculated using appropriate equations. Results: All resins with additives had increased %WU and ES. TEGDMA-containing systems presented higher %WU, %WD, ES, f and %V values, followed by resins based on CH(3)Bis-GMA and CF(3)Bis-GMA. Conclusions: Aldehyde and diketone led to increases in the water sorption characteristics of experimental resins.
Resumo:
Cellulase, an enzymatic complex that synergically promotes the degradation of cellulose to glucose and cellobiose, free or adsorbed onto Si/SiO(2) wafers at 60 degrees C has been employed as catalyst in the hydrolysis of microcrystalline cellulose (Avicel), microcrystalline cellulose pre-treated with hot phosphoric acid (CP), cotton cellulose (CC) and eucalyptus cellulose (EC). The physical characteristics such as index of crystallinity (I(C)), degree of polymerization (DP) and water sorption values were determined for all samples. The largest conversion rates of cellulose into the above-mentioned products using free cellulase were observed for samples with the largest water sorption values; conversion rates showed no correlation with either IC or DP of the biopolymer. Cellulose with large water sorption value possesses large pore volumes, hence higher accessibility. The catalytic efficiency of immobilized cellulase could not be correlated with the physical characteristics of cellulose samples. The hydrolysis rates of the same cellulose samples with immobilized cellulase were lower than those by the free enzyme, due to the diffusion barrier (biopolymer chains approaching to the immobilized enzyme) and less effective contact between the enzyme active site and its substrate. Immobilized cellulase, unlike its free counterpart, can be recycled at least six times without loss of catalytic activity, leading to higher overall cellulose conversion. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Animal production is one of the most expressive sectors of Brazilian agro-economy. Although antibiotics are routinely used in this activity, their occurrence, fate, and potential impacts to the local environment are largely unknown. This research evaluated sorption-desorption and occurrence of four commonly used fluoroquinolones (norfloxacin, ciprofloxacin, danofloxacin, and enrofloxacin) in poultry litter and soil samples from Sao Paulo State, Brazil. The sorption-desorption studies involved batch equilibration technique and followed the OECD guideline for pesticides. All compounds were analyzed by HPLC, using fluorescence detector. Fluoroquinolones' sorption potential to the poultry litters (K-d <= 65 L kg(-1)) was lower than to the soil (K-d similar to 40,000 L kg(-1)), but was always high (>= 69% of applied amount) indicating a higher specificity of fluoroquinolones interaction with soils. The addition of poultry litter (5%) to the soil had not affected sorption or desorption of these compounds. Desorption was negligible in the soil (<= 0.5% of sorbed amount), but not in the poultry litters (up to 42% of sorbed amount). Fluoroquinolones' mean concentrations found in the poultry litters (1.37 to 6.68 mg kg(-1)) and soils (22.93 mu g kg(-1)) were compatible to those found elsewhere (Austria, China, and Turkey). Enrofloxacin was the most often detected compound (30% of poultry litters and 27% of soils) at the highest mean concentrations (6.68 mg kg(-1) for poultry litters and 22.93 mu g kg(-1) for soils). These results show that antibiotics are routinely used in poultry production and might represent one potential source of pollution to the environment that has been largely ignored and should be further investigated in Brazil. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
In a previous work, succinylated sugarcane bagasse (SCB 2) was prepared from sugarcane bagasse (B) using succinic anhydride as modifying agent. In this work the adsorption of cationic dyes onto SCB 2 from aqueous solutions was investigated. Methylene blue, MB, and gentian violet, GV, were selected as adsorbates. The capacity of SCB 2 to adsorb MB and GV from aqueous single dye solutions was evaluated at different contact times, pH, and initial adsorbent concentration. According to the obtained results, the adsorption processes could be described by the pseudo-second-order kinetic model. Adsorption isotherms were well fitted by Langmuir model. Maximum adsorption capacities for MB and GV onto SCB 2 were found to be 478.5 and 1273.2 mg/g, respectively. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Binary and ternary systems of Ni2+, Zn2+, and Pb2+ were investigated at initial metal concentrations of 0.5, 1.0 and 2.0 mM as competitive adsorbates using Arthrospira platensis and Chlorella vulgaris as biosorbents. The experimental results were evaluated in terms of equilibrium sorption capacity and metal removal efficiency and fitted to the multi-component Langmuir and Freundlich isotherms. The pseudo second order model of Ho and McKay described well the adsorption kinetics, and the FT-IR spectroscopy confirmed metal binding to both biomasses. Ni2+ and Zn2+ interference on Pb2+ sorption was lower than the contrary, likely due to biosorbent preference to Pb. In general, the higher the total initial metal concentration, the lower the adsorption capacity. The results of this study demonstrated that dry biomass of C. vulgaris behaved as better biosorbent than A. platensis and suggest its use as an effective alternative sorbent for metal removal from wastewater. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Adequate polymerization plays an important role on the longevity of the composite resin restorations. Objectives: The aim of this study was to evaluate the effect of light-curing units, curing mode techniques and storage media on sorption, solubility and biaxial flexural strength (BFS) of a composite resin. Material and Methods: Two hundred and forty specimens were made of one composite resin (Esthet-X) in a stainless steel mold (2 mm x 8 mm 0), and divided into 24 groups (n=10) established according to the 4 study factors: light-curing units: quartz tungsten halogen (QTH) lamp and light-emitting diodes (LED); energy densities: 16 J/cm(2) and 20 J/cm(2); curing modes: conventional (CM) and pulse-delay (PD); and permeants: deionized water and 75% ethanol for 28 days. Sorption and solubility tests were performed according to ISO 4049:2000 specifications. All specimens were then tested for BFS according to ASTM F394-78 specification. Data were analyzed by three-way ANOVA followed by Tukey, Kruskal-Wallis and Mann-Whitney tests (alpha=0.05). Results: In general, no significant differences were found regarding sorption, solubility or BFS means for the light-curing units and curing modes (p>0.05). Only LED unit using 16 J/cm(2) and PD using 10 s produced higher sorption and solubility values than QTH. Otherwise, using CM (16 J/cm(2)), LED produced lower values of BFS than QTH (p<0.05). 75% ethanol permeant produced higher values of sorption and solubility and lower values of BFS than water (p<0.05). Conclusion: Ethanol storage media produced more damage on composite resin than water. In general the LED and QTH curing units using 16 and 20 J/cm(2) by CM and PD curing modes produced no influence on the sorption, solubility or BFS of the tested resin.
Resumo:
Sorption of aspartic and glutamic aminoacids by regeneration of calcined hydrotalcite is reported. Hydrotalcite was synthesized by coprecipitation and calcined at 773 K. Sorption experiments were performed at 298 K and 310 K, and the results reveal that at low aminoacids equilibrium concentrations, intercalation of hydroxyl anions takes place while at high equilibrium concentrations, the sorption process occur by means re-hydration and aminoacids intercalation of hydrotalcite. The results also suggested that Asp and Glu sorption is a temperature dependent process. The amount of sorbed amino acid decreases as the temperature increase. The effect is more pronounced for Glu sorption probably due to its higher hydrophobic character, which makes the sorption more difficult in comparison with sorption of Asp at higher temperature.
Resumo:
Aliquat 336, a liquid hydrophobic material, was used at different concentrations (0.5-3.0%, w/v) as an additive in the preparation of encapsulated lipase from Bacillus sp. ITP-001 on sol-gel silica matrices using tetraethoxysilane (TEOS) as the precursor. The resulting hydrophobic matrices and immobilized lipases were characterized with regard to specific surface area (BET method), adsorption-desorption isotherms, pore volume (Vp) and size (dp) by nitrogen adsorption (BJH method) and scanning electron microscopy (SEM). The catalytic activities and the corresponding coupling yields were assayed in the hydrolysis of olive oil. In comparison with pure silica matrices, the immobilization process in the presence of Aliquat 336 decreased the values for specific surface area and increased the values for pore specific volume (Vp) and mean pore diameter (dp). This behavior may be related to the partial adsorption of the enzyme on the external surface of the hydrophobic matrix as indicated by scanning electron microscopy. Aliquat 336 concentrations in the range from 0.5 to 1.5% (w/v) provided immobilized derivatives with higher coupling yields and better substrate affinity. The highest coupling yield (Y-A = 71%) was obtained for the immobilized enzyme prepared in the presence of 1.5% Aliquat which gave the following morphological properties: specific surface area = 183 m(2)/g, pore specific volume (Vp) = 0.36 cc/g and mean pore diameter (dp)= 91 angstrom. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
We examined the interaction of the cationic antimicrobial peptide (AMP) tritrpticin (VRRFPWWWPFLRR, TRP3) with Langmuir monolayers of zwitterionic (dipalmitoyl phosphatidylcholine, DPPC, and dipalmitoyl phosphatidylethanolamine, DPPE) and negatively charged phospholipids (dipalmitoyl phosphatidic acid, DPPA, and dipalmitoyl phosphatidylglycerol, DPPG). Both surface pressure and surface potential isotherms became more expanded upon addition of TRP3 (DPPE similar to DPPC << DPPA < DPPG). The stronger interaction with negatively charged phospholipids agrees with data for vesicles and planar lipid bilayers, and with AMPs greater activity against bacterial membranes versus mammalian cell membranes. Considerable expansion of negatively charged monolayers occurred at 10 and 30 mol% TRP3, especially at low surface pressure. Moreover, a difference was observed between PA and PG, demonstrating that the interaction, besides being modulated by electrostatic interactions, displays specificity with regard to headgroup, being more pronounced in the case of PG, present in large quantities in bacterial membranes. In previous studies, it was proposed that the peptide acts by a toroidal pore-like mechanism [1,2]. Considering the evidence from the literature that PG shows a propensity to form a positive curvature as do toroidal pores, the observation of TRP3's preference for the PG headgroup and the dramatic increase in area promoted by this interaction represent further support for the toroidal pore mechanism of action proposed for TRP3. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to determine the influence of mouthrinses on the surface roughness of a nanofilled composite resin after toothbrushing. One hundred nanofilled composite resin specimens were prepared and randomly distributed into two groups-brushed and non-brushed-and then assigned to five subgroups, according to the mouthrinse solutions (n = 10): Colgate Plax Fresh Mint, Oral B, Cepacol, Colgate Plax, and artificial saliva. Each sample was immersed in 20 mL of the mouthrinses for 1 minute, 5 days per week, twice a day, for a 3-week period. The control group used in the study was one in which the specimens were not subjected to brushing and remained only in artificial saliva. Toothbrushing was performed once a week for 1 minute, for 3 weeks. Surface roughness measurements (Ra) were performed after the immersion period and toothbrushing, by means of a profilometer. Data were analyzed by two-way ANOVA and Tukey's test. Analysis revealed that the association between toothbrushing and Colgate Plax Fresh Mint produced the lowest surface roughness (p < 0.05). All other groups tested (Oral B, Cepacol, Colgate Plax, artificial saliva) exhibited no statistically significant differences between surfaces, whether subjected to toothbrushing or not (p < 0.05). It was concluded that the surface roughness of the nanofilled composite resin tested can be influenced by the mouthrinse associated with toothbrushing.
Resumo:
Polythiophene (PTh) phase electropolymerized on the stainless steel wire was evaluated as solid-phase microextraction (SPME), and analysis by liquid chromatography with spectrophotometric detection (LC-UV) for determination of new-generation antidepressants, selective serotonin reuptake inhibitors (SSRIs) (citalopram, paroxetine, fluoxetine and sertraline), in plasma samples. The influence of electropolymerization variables (scan rate, potential range and scan cycles) was evaluated on SPME performance. The SPME variables (extraction time, temperature, matrix pH, ionic strength and desorption procedure), as well as the influence of plasma proteins on sorption mechanisms were also evaluated. The SPME/LC-UV method developed for determination of antidepressants in plasma sample presented a linear range between the limit of quantification (LOQ, 200-250 ng mL(-1)) to 4000 ng mL(-1), and interday precision with coefficient of variation (CV) ranged from 11 to 15%. The proposed method can be a useful tool for the determination of antidepressants in human plasma samples in urgent toxicological analysis after the accidental or suicidal intake of higher doses of medications.