14 resultados para Sorption and desorptions
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Objectives: To evaluate the effect of additives on the water sorption characteristics of Bis-GMA based copolymers and composites containing TEGDMA, CH(3)Bis-GMA or CF(3)Bis-GMA. Material and methods: Fifteen experimental copolymers and corresponding composites were prepared combining Bis-GMA and TEGDMA, CH(3)Bis-GMA or CF(3)Bis-GMA, with aldehyde or diketone (24 and 32 mol%) totaling 30 groups. For composites, barium aluminosilicate glass and pyrogenic silica was added to comonomer mixtures. Photopolymerization was effected by 0.2 wt% each of camphorquinone and N,N-dimethyl-p-toluidine. Specimen densities in dry and water saturated conditions were obtained by Archimedes' method. Water sorption and desorption were evaluated in a desorption-sorption-desorption cycle. Water uptake (%WU), water desorption (%WD), equilibrium solubility (ES; mu g/mm(3)), swelling (f) and volume increase (%V) were calculated using appropriate equations. Results: All resins with additives had increased %WU and ES. TEGDMA-containing systems presented higher %WU, %WD, ES, f and %V values, followed by resins based on CH(3)Bis-GMA and CF(3)Bis-GMA. Conclusions: Aldehyde and diketone led to increases in the water sorption characteristics of experimental resins.
Resumo:
Adequate polymerization plays an important role on the longevity of the composite resin restorations. Objectives: The aim of this study was to evaluate the effect of light-curing units, curing mode techniques and storage media on sorption, solubility and biaxial flexural strength (BFS) of a composite resin. Material and Methods: Two hundred and forty specimens were made of one composite resin (Esthet-X) in a stainless steel mold (2 mm x 8 mm 0), and divided into 24 groups (n=10) established according to the 4 study factors: light-curing units: quartz tungsten halogen (QTH) lamp and light-emitting diodes (LED); energy densities: 16 J/cm(2) and 20 J/cm(2); curing modes: conventional (CM) and pulse-delay (PD); and permeants: deionized water and 75% ethanol for 28 days. Sorption and solubility tests were performed according to ISO 4049:2000 specifications. All specimens were then tested for BFS according to ASTM F394-78 specification. Data were analyzed by three-way ANOVA followed by Tukey, Kruskal-Wallis and Mann-Whitney tests (alpha=0.05). Results: In general, no significant differences were found regarding sorption, solubility or BFS means for the light-curing units and curing modes (p>0.05). Only LED unit using 16 J/cm(2) and PD using 10 s produced higher sorption and solubility values than QTH. Otherwise, using CM (16 J/cm(2)), LED produced lower values of BFS than QTH (p<0.05). 75% ethanol permeant produced higher values of sorption and solubility and lower values of BFS than water (p<0.05). Conclusion: Ethanol storage media produced more damage on composite resin than water. In general the LED and QTH curing units using 16 and 20 J/cm(2) by CM and PD curing modes produced no influence on the sorption, solubility or BFS of the tested resin.
Resumo:
The influence of the temperature and reaction time on the sulfation process of a dolomite is investigated in this paper. The sulfation effectiveness was evaluated and correlated with changes in the physical characteristics of a Brazilian dolomite during the reactive process. Calcination and sulfation experiments were performed under isothermal conditions for dolomite samples with average particle sizes of 545 mu m at temperatures of 750 degrees C, 850 degrees C and 950 degrees C at different times of sulfation. Thermogravimetric tests were applied to establish the reactivity variation of the dolomite in function of the time in the sulfation reaction and evaluate the methodology of the samples preparation. Porosimetry tests were performed to study the pore blockage of dolomite during the sulfation reaction. The highest values of BET surface area were 25.55 m(2)/g, 29.55 m(2)/g and 12.62 m(2)/g for calcined samples and after their sulfation processes, conversions of 51.5%, 61.9% and 42.8% were obtained at 750 degrees C, 850 degrees C and 950 degrees C, respectively. Considering the process as a whole, the best fit was provided by a first-order exponential decay equation. Moreover, the results have shown that it is possible to quantify the decreasing in the dolomite reactivity for sulfur dioxide sorption and understand the changes in the behavior of the sulfation process of limestones when applied to technologies, as fluidized bed combustor, in which sulfur dioxide is present. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
Animal production is one of the most expressive sectors of Brazilian agro-economy. Although antibiotics are routinely used in this activity, their occurrence, fate, and potential impacts to the local environment are largely unknown. This research evaluated sorption-desorption and occurrence of four commonly used fluoroquinolones (norfloxacin, ciprofloxacin, danofloxacin, and enrofloxacin) in poultry litter and soil samples from Sao Paulo State, Brazil. The sorption-desorption studies involved batch equilibration technique and followed the OECD guideline for pesticides. All compounds were analyzed by HPLC, using fluorescence detector. Fluoroquinolones' sorption potential to the poultry litters (K-d <= 65 L kg(-1)) was lower than to the soil (K-d similar to 40,000 L kg(-1)), but was always high (>= 69% of applied amount) indicating a higher specificity of fluoroquinolones interaction with soils. The addition of poultry litter (5%) to the soil had not affected sorption or desorption of these compounds. Desorption was negligible in the soil (<= 0.5% of sorbed amount), but not in the poultry litters (up to 42% of sorbed amount). Fluoroquinolones' mean concentrations found in the poultry litters (1.37 to 6.68 mg kg(-1)) and soils (22.93 mu g kg(-1)) were compatible to those found elsewhere (Austria, China, and Turkey). Enrofloxacin was the most often detected compound (30% of poultry litters and 27% of soils) at the highest mean concentrations (6.68 mg kg(-1) for poultry litters and 22.93 mu g kg(-1) for soils). These results show that antibiotics are routinely used in poultry production and might represent one potential source of pollution to the environment that has been largely ignored and should be further investigated in Brazil. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Sorption of aspartic and glutamic aminoacids by regeneration of calcined hydrotalcite is reported. Hydrotalcite was synthesized by coprecipitation and calcined at 773 K. Sorption experiments were performed at 298 K and 310 K, and the results reveal that at low aminoacids equilibrium concentrations, intercalation of hydroxyl anions takes place while at high equilibrium concentrations, the sorption process occur by means re-hydration and aminoacids intercalation of hydrotalcite. The results also suggested that Asp and Glu sorption is a temperature dependent process. The amount of sorbed amino acid decreases as the temperature increase. The effect is more pronounced for Glu sorption probably due to its higher hydrophobic character, which makes the sorption more difficult in comparison with sorption of Asp at higher temperature.
Resumo:
The aim of this study was to determine the influence of mouthrinses on the surface roughness of a nanofilled composite resin after toothbrushing. One hundred nanofilled composite resin specimens were prepared and randomly distributed into two groups-brushed and non-brushed-and then assigned to five subgroups, according to the mouthrinse solutions (n = 10): Colgate Plax Fresh Mint, Oral B, Cepacol, Colgate Plax, and artificial saliva. Each sample was immersed in 20 mL of the mouthrinses for 1 minute, 5 days per week, twice a day, for a 3-week period. The control group used in the study was one in which the specimens were not subjected to brushing and remained only in artificial saliva. Toothbrushing was performed once a week for 1 minute, for 3 weeks. Surface roughness measurements (Ra) were performed after the immersion period and toothbrushing, by means of a profilometer. Data were analyzed by two-way ANOVA and Tukey's test. Analysis revealed that the association between toothbrushing and Colgate Plax Fresh Mint produced the lowest surface roughness (p < 0.05). All other groups tested (Oral B, Cepacol, Colgate Plax, artificial saliva) exhibited no statistically significant differences between surfaces, whether subjected to toothbrushing or not (p < 0.05). It was concluded that the surface roughness of the nanofilled composite resin tested can be influenced by the mouthrinse associated with toothbrushing.
Resumo:
Polythiophene (PTh) phase electropolymerized on the stainless steel wire was evaluated as solid-phase microextraction (SPME), and analysis by liquid chromatography with spectrophotometric detection (LC-UV) for determination of new-generation antidepressants, selective serotonin reuptake inhibitors (SSRIs) (citalopram, paroxetine, fluoxetine and sertraline), in plasma samples. The influence of electropolymerization variables (scan rate, potential range and scan cycles) was evaluated on SPME performance. The SPME variables (extraction time, temperature, matrix pH, ionic strength and desorption procedure), as well as the influence of plasma proteins on sorption mechanisms were also evaluated. The SPME/LC-UV method developed for determination of antidepressants in plasma sample presented a linear range between the limit of quantification (LOQ, 200-250 ng mL(-1)) to 4000 ng mL(-1), and interday precision with coefficient of variation (CV) ranged from 11 to 15%. The proposed method can be a useful tool for the determination of antidepressants in human plasma samples in urgent toxicological analysis after the accidental or suicidal intake of higher doses of medications.
Resumo:
Purpose: To assess the microshear bond strength of 3 experimental adhesives with different degrees of hydrophilicity after 1, 7 and 90 days of storage. Materials and Methods: The bonding effectiveness of three experimental two-step etch-and-rinse adhesives (bis-GMA, bis-EMA/bis-GMA, polybutadiene [C6H12]) and one commercial adhesive (Single Bond) to sound hydrated dentin was determined using the nnicroshear test with delimitation of the adhesive area after 1, 7, and 90 days of storage in water at 37 degrees C. Two-way ANOVA was performed at the 0.05 probability level. The fractures were classified as adhesive, cohesive in dentin, cohesive in resin, and mixed. Results: The experimental adhesives showed values in the range of 11.31 to 12.96 MPa, with polybutadiene (PBH) showing the lowest bond strengths, bis-GMA the highest, and bis-EMA/bis-GMA intermediary values. Single Bond yielded bond strengths of approximately 24 MPa. Water storage decreased the bond strength in all adhesives. Adhesive fractures were predominant in experimental adhesives, while mixed fractures were the most frequent type in the Single Bond group. Conclusion: The experimental dentin adhesives of this study were able to form resin tags, but they could not penetrate into the collagen fibers and form hybrid layers. The resulting low bond strength decreased with increasing length of storage.
Resumo:
Cellulase, an enzymatic complex that synergically promotes the degradation of cellulose to glucose and cellobiose, free or adsorbed onto Si/SiO(2) wafers at 60 degrees C has been employed as catalyst in the hydrolysis of microcrystalline cellulose (Avicel), microcrystalline cellulose pre-treated with hot phosphoric acid (CP), cotton cellulose (CC) and eucalyptus cellulose (EC). The physical characteristics such as index of crystallinity (I(C)), degree of polymerization (DP) and water sorption values were determined for all samples. The largest conversion rates of cellulose into the above-mentioned products using free cellulase were observed for samples with the largest water sorption values; conversion rates showed no correlation with either IC or DP of the biopolymer. Cellulose with large water sorption value possesses large pore volumes, hence higher accessibility. The catalytic efficiency of immobilized cellulase could not be correlated with the physical characteristics of cellulose samples. The hydrolysis rates of the same cellulose samples with immobilized cellulase were lower than those by the free enzyme, due to the diffusion barrier (biopolymer chains approaching to the immobilized enzyme) and less effective contact between the enzyme active site and its substrate. Immobilized cellulase, unlike its free counterpart, can be recycled at least six times without loss of catalytic activity, leading to higher overall cellulose conversion. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In a previous work, succinylated sugarcane bagasse (SCB 2) was prepared from sugarcane bagasse (B) using succinic anhydride as modifying agent. In this work the adsorption of cationic dyes onto SCB 2 from aqueous solutions was investigated. Methylene blue, MB, and gentian violet, GV, were selected as adsorbates. The capacity of SCB 2 to adsorb MB and GV from aqueous single dye solutions was evaluated at different contact times, pH, and initial adsorbent concentration. According to the obtained results, the adsorption processes could be described by the pseudo-second-order kinetic model. Adsorption isotherms were well fitted by Langmuir model. Maximum adsorption capacities for MB and GV onto SCB 2 were found to be 478.5 and 1273.2 mg/g, respectively. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This article studied the applicability of poly(acrylamide) and methylcellulose (PAAm-MC) hydrogels as potential delivery vehicle for the controlled-extended release of ammonium sulfate (NH(4))(2)SO(4) and potassium phosphate (KH(2)PO(4)) fertilizers. PAAm-MC hydrogels with different acrylamide (AAm) and MC concentrations were prepared by a free radical polymerization method. The adsorption and desorption kinetics of fertilizers were determined using conductivity measurements based on previously built analytical curve. The addition of MC in the PAAm chains increased the quantities of (NH(4))(2)SO(4) and KH(2)PO(4) loaded and extended the time and quantities of fertilizers released. Coherently, both loading and releasing processes were strongly influenced by hydrophilic properties of hydrogels (AAm/MC mass proportion). The best sorption (124.0 mg KH(2)PO(4)/g hydrogel and 58.0 mg (NH(4))(2)SO(4)/g hydrogel) and desorption (54.9 mg KH(2)PO(4)/g hydrogel and 49.5 mg (NH(4))(2)SO(4)/g hydrogel) properties were observed for 6.0% AAm-1.0% MC hydrogels (AAm/MC mass proportion equal 6), indicating that these hydrogels are potentially viable to be used in controlled-extended release of fertilizers systems. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci 123: 2291-2298, 2012
Resumo:
Binary and ternary systems of Ni2+, Zn2+, and Pb2+ were investigated at initial metal concentrations of 0.5, 1.0 and 2.0 mM as competitive adsorbates using Arthrospira platensis and Chlorella vulgaris as biosorbents. The experimental results were evaluated in terms of equilibrium sorption capacity and metal removal efficiency and fitted to the multi-component Langmuir and Freundlich isotherms. The pseudo second order model of Ho and McKay described well the adsorption kinetics, and the FT-IR spectroscopy confirmed metal binding to both biomasses. Ni2+ and Zn2+ interference on Pb2+ sorption was lower than the contrary, likely due to biosorbent preference to Pb. In general, the higher the total initial metal concentration, the lower the adsorption capacity. The results of this study demonstrated that dry biomass of C. vulgaris behaved as better biosorbent than A. platensis and suggest its use as an effective alternative sorbent for metal removal from wastewater. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Polythiophene (PTh) phase electropolymerized on the stainless steel wire was evaluated as solid-phase microextraction (SPME), and analysis by liquid chromatography with spectrophotometric detection (LC-UV) for determination of new-generation antidepressants, selective serotonin reuptake inhibitors (SSRIs) (citalopram, paroxetine, fluoxetine and sertraline), in plasma samples. The influence of electropolymerization variables (scan rate, potential range and scan cycles) was evaluated on SPME performance. The SPME variables (extraction time, temperature, matrix pH, ionic strength and desorption procedure), as well as the influence of plasma proteins on sorption mechanisms were also evaluated. The SPME/LC-UV method developed for determination of antidepressants in plasma sample presented a linear range between the limit of quantification (LOQ, 200-250 ng mL-1) to 4000 ng mL-1, and interday precision with coefficient of variation (CV) ranged from 11 to 15%. The proposed method can be a useful tool for the determination of antidepressants in human plasma samples in urgent toxicological analysis after the accidental or suicidal intake of higher doses of medications.
Resumo:
The influence of curing tip distance and storage time in the kinetics of water diffusion (water sorption-W SP, solubility-W SB, and net water uptake) and color stability of a composite were evaluated. Composite samples were polymerized at different distances (5, 10, and 15 mm) and compared to a control group (0 mm). After desiccation, the specimens were stored in distilled water to evaluate the water diffusion over a 120-day period. Net water uptake was calculated (sum of WSP and WSB). The color stability after immersion in a grape juice was compared to distilled water. Data were submitted to three-way ANOVA/Tukey's test (α = 5%). The higher distances caused higher net water uptake (p < 0.05). The immersion in the juice caused significantly higher color change as a function of curing tip distance and the time (p < 0.05). The distance of photoactivation and storage time provide the color alteration and increased net water uptake of the resin composite tested.