6 resultados para Solid Carbon

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work addresses the synthesis of carbon nanomaterials (CNMs) by up-cycling common solid wastes. These feedstocks could supersede the use of costly and often toxic or highly flammable chemicals, such as hydrocarbon gases, carbon monoxide, and hydrogen, which are commonly used as feedstocks in current nanomanufacturing processes for CNMs. Agricultural sugar cane bagasse and corn residues, scrap tire chips, and postconsumer polyethylene (PE) and polyethylene terephthalate (PET) bottle shreddings were either thermally treated by sole pyrolysis or by sequential pyrolysis and partial oxidation. The resulting gaseous carbon-bearing effluents were then channeled into a heated reactor. CNMs, including carbon nanotubes, were catalytically synthesized therein on stainless steel meshes. This work revealed that the structure of the resulting CNMs is determined by the feedstock type, through the disparate mixtures of carbon-bearing gases generated when different feedstocks are pyrolyzed. CNM characterization was conducted by scanning and transmission electron microscopy as well as by Raman spectroscopy and by thermogravimetric analysis. Gas chromatography was used to characterize the gases in the synthesis chamber. This work demonstrated an alternative method for efficient manufacturing of CNMs using both biodegradable and nonbiodegradable agricultural and municipal carbonaceous wastes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The filamentous fungus Paecylomices variotii was able to produce high levels of cell extract and extracellular invertases when grown under submerged fermentation (SbmF) and solid-state fermentation, using agroindustrial products or residues as substrates, mainly soy bran and wheat bran, at 40A degrees C for 72 h and 96 h, respectively. Addition of glucose or fructose (a parts per thousand yen1%; w/v) in SbmF inhibited enzyme production, while the addition of 1% (w/v) peptone as organic nitrogen source enhanced the production by 3.7-fold. However, 1% (w/v) (NH4)(2)HPO4 inhibited enzyme production around 80%. The extracellular form was purified until electrophoretic homogeneity (10.5-fold with 33% recovery) by DEAE-Fractogel and Sephacryl S-200 chromatography. The enzyme is a monomer with molecular mass of 102 kDa estimated by SDS-PAGE with carbohydrate content of 53.6%. Optima of temperature and pH for both, extracellular and cell extract invertases, were 60A degrees C and 4.0-4.5, respectively. Both invertases were stable for 1 h at 60A degrees C with half-lives of 10 min at 70A degrees C. Mg2+, Ba2+ and Mn2+ activated both extracellular and cell extract invertases from P. variotii. The kinetic parameters K-m and V-max for the purified extracellular enzyme corresponded to 2.5 mM and 481 U/mg prot(-1), respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Syntesis of carbon nanomaterials from corn waste (DDGS). The world's largest ethanol producer (USA) uses corn as feedstock. DDGS (distillers dried grains with solubles) is the main waste generated from this process (around 32 million t/year). DDGS samples were pyrolyzed at 1000 degrees C in a furnace with controlled atmosphere. The effluent was channeled to a second furnace, in which catalyst substrates were placed. Chromatographic analysis was used to evaluate the gaseous effluents, showing that the catalyst reduced hydrocarbon emissions. The solid products formed were analyzed by SEM and TEM. Graphitic structures and carbon nanofibers, 50 mu m in length and with diameters of 80-200 nm, were formed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large-scale soil application of biochar may enhance soil fertility, increasing crop production for the growing human population, while also sequestering atmospheric carbon. But reaching these beneficial outcomes requires an understanding of the relationships among biochar's structure, stability, and contribution to soil fertility. Using quantitative C-13 nuclear magnetic resonance (NMR) spectroscopy, we show that Terra Preta soils (fertile anthropogenic dark earths in Amazonia that were enriched with char >800 years ago) consist predominantly of char residues composed of similar to 6 fused aromatic rings substituted by COO- groups that significantly increase the soils' cation-exchange capacity and thus the retention of plant nutrients. We also show that highly productive, grassland-derived soils in the U.S, (Mollisols) contain char (generated by presettlement fires) that is structurally comparable to char in the Terra Preta soils and much more abundant than previously thought (similar to 40-50% of organic C). Our findings indicate that these oxidized char residues represent a particularly stable, abundant, and fertility-enhancing form of soil organic matter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new biomaterial, based on silica organofunctionalized with p-phenylenediamine (p-PDA) and the enzyme peroxidase, was used in the development of an enzymatic solid-phase reactor. The analytical techniques used in the characterization showed that the organic ligand was incorporated into the silica matrix. Thus, the silica modified with p-PDA allowed the incorporation of peroxidase by the electrostatic interaction between the carboxylic groups present in the enzyme molecules and the amino groups attached to the silica. The enzymatic solid-phase reactor was used for chemical oxidation of phenols in 1, 4-benzoquinone that was then detected by chronoamperometry. The system allowed the analysis of hydroquinone with a detection limit of 83.6 nmol L-1. Thus, the new material has potential in the determination of phenolic compounds river water samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, catalysts containing 5 wt.% Ni deposited on a support composed of a CeO2-ZrO2 solid solution deposited on alumina were tested in the steam reforming of methane. The supports, with various ratios of Ce to Zr, were prepared by co-precipitation of the oxide precursors, followed by calcination in synthetic air. The catalysts were then prepared by Ni impregnation of the supports. The prepared solids were characterized by temperature-programmed reduction with H-2 (TPR-H-2), in situ X-ray diffraction (XRD) and X-ray absorption near-edge structure (XANES) spectroscopy. The XRD analysis confirmed the formation of a solid solution between ZrO2 and CeO2. In the catalytic tests, it was found that catalysts with higher Ce content did not exhibit deactivation during 6 h of reaction. The catalyst with highest Ce content, Ni(0.8Ce0.2Zr)AI, provided the best result, with the highest rate of conversion of methane and the lowest carbon deposition, which may be partly due to the smaller Ni-0 crystallites in this sample and also the segregated CeO2 particles may have favored H2O adsorption which could lead to higher C gasification. (C) 2012 Elsevier B.V. All rights reserved.