43 resultados para Shear bond strength test

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We evaluated the effects of air-drying distance and bond surface area on the shear bond strength of a 2-step etch-and-rinse adhesive. A total of 120 bovine anterior teeth were equally divided into 6 main groups based on bonding surface area. The main groups were divided into sub-groups (n = 5) according to air-drying distance. The shear strength was determined using a universal testing machine at a crosshead speed of 0.5 mm/min. The averaged results were subjected to two-way ANOVA and Tukey's test (alpha = 0.05). Two-way ANOVA testing identified no significant cross-product interactions (p > 0.05), but the main factors of area (p < 0.0001) and air-drying distance (p < 0.00001) significantly affected the mean bond strength. Shorter air-drying distances improved bond strength, and increased surface area decreased the bond strength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shear bond strength between Ni-Cr alloy bonded to a ceramic substrate Introduction: The aim of this study was to evaluate the shear bond strength between a Ni-Cr alloy and a ceramic system submitted or not to thermocycling. Materials and methods: Forty-eight cylinder blocks of Ni-Cr with 3.0 mm diameter by 4.0 mm hight and 48 disc-shaped specimens (7.0 mm in diameter by 2.0 mm thick) composed of ceramic were prepared. The Ni-Cr cylinder blocks were randomised in two groups of 24 specimens each. One group was submitted to air-particle abrasion (sandblasting) with 50 mu m Al2O3 (0.4-0.7 MPa) during 20 s, and the other group was submitted to mechanical retentions with carbide burrs. Each group was subdivided into other two groups (n = 12), submitted or not to thermocycling (500 cycles, 5-55 degrees C). The cylinder blocks were bonded to the disc-shaped ceramic specimens under 10 N of load. The shear bond strengths (MPa) were measured using a universal testing machine at a cross head speed of 0.5 mm/min and 200 kgf of load. The data were submitted to statistical analysis (ANOVA and Tukey's test). Results: The air-particle abrasion group exhibited significantly higher shear bond strength when compared to drilled group (p < 0.05). Conclusions: Thermocycling decreased significantly the bond strengths for all groups tested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIM: To evaluate the bond strength of brackets fixed with different materials (two light-cured nanofilled resins - Transbond Supreme LV and Flow Tain LV, a light-cured resin - Transbond XT (control) and two chemically cured resins for indirect bonding - Sondhi Rapid- Set and Custom I.Q.) using the indirect bonding technique after 10 min and 24 h, and evaluate the type of failure. METHODS: One hundred premolars were selected and randomly divided into groups (n=10) according to the material and fixation period. The brackets were bonded through the indirect technique following the manufacturer's instructions and stored in deionized water at 37°C for 10 min or 24 h. After, the specimens were submitted to a shear bond strength (SBS) test (Instron) at 0.5 mm/min and evaluated for adhesive remnant index (ARI). The data were submitted to ANOVA and Tukey's test (p<0.05) and the ARI scores were submitted to the chi-square test. RESULTS: It could be observed a significant difference among the materials (Flow Tain LV = Transbond Supreme LV = Transbond XT> Sondhi Rapid-Set > Custom I.Q.). There was no significant difference in resistance values between 10 min and 24 h, regardless of the materials. Most groups showed adhesive remaining adhered to the enamel (scores 2 and 3) without statistically significant difference (p>0.05). CONCLUSIONS: It was concluded that the light-cured nanofilled materials used in indirect bonding showed greater resistance than the chemically cured materials. The period of fixation had no influence on the resistance for different materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the effect of different heat-treatment strategies for a ceramic primer on the shear bond strength of a 10-methacryloyloxydecyl-dihydrogen-phosphate (MDP)-based resin cement to a yttrium-stabilized tetragonal zirconia polycrystal (Y-TZP) ceramic. Specimens measuring 4.5 x 3.5 x 4.5 mm(3) were produced from Y-TZP presintered cubes and embedded in polymethyl methacrylate (PMMA). Following finishing, the specimens were cleaned using an ultrasound device and distilled water and randomly divided into 10 experimental groups (n=14) according to the heat treatment of the ceramic primer and aging condition. The strategies used for the experimental groups were: GC (control), without primer; G20, primer application at ambient temperature (20 degrees C); G45, primer application + heat treatment at 45 degrees C; G79, primer application + heat treatment at 79 degrees C; and G100, primer application + heat treatment at 100 degrees C. The specimens from the aging groups were submitted to thermal cycling (6000 cycles, 5 degrees C/55 degrees C, 30 seconds per bath) after 24 hours. A cylinder of MDP-based resin cement (2.4 mm in diameter) was constructed on the ceramic surface of the specimens of each experimental group and stored for 24 hours at 37 degrees C. The specimens were submitted to a shear bond strength test (n=14). Thermal gravimetric analysis was performed on the ceramic primer. The data obtained were statistically analyzed by two-way analysis of variance and the Tukey test (alpha=0.05). The experimental group G79 without aging (7.23 +/- 2.87 MPa) presented a significantly higher mean than the other experimental groups without aging (GC: 2.81 +/- 1.5 MPa; G20: 3.38 +/- 2.21 MPa; G100: 3.96 +/- 1.57 MPa), showing no difference from G45 only (G45: 6 +/- 3.63 MPa). All specimens of the aging groups debonded during thermocycling and were considered to present zero bond strength for the statistical analyses. In conclusion, heat treatment of the metal/zirconia primer improved bond strength under the initial condition but did not promote stable bonding under the aging condition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The aim of this study was to compare the shear bond strength between Ni-Cr alloy specimens bonded to air-abraded Ni-Cr, bur-abraded Ni-Cr, etched ceramic and etched enamel substrates using the resin cements RelyX ARC or Enforce. Materials and methods: Ni-Cr specimens were made and sandblasted with Al2O3 airborne-particles. Disc-shaped patterns were made for each of the four experimental substrates: Ni-Cr treated with Al2O3 airborne-particles, Ni-Cr treated with diamond bur abrasion, etched enamel and etched ceramic. Results: Significant differences in shear bond strength were found between the different materials and luting agents evaluated. The Ni-Cr alloy cylinders bonded to Ni-Cr surfaces sandblasted with 50 lm Al2O3 particles and bonded with Enforce achieved the highest bond strength when compared with other substrates (28.9 MPa, p < 0.05). Bur-abraded metal discs had lowest values, regardless the cement used (2.9 and 6.9 MPa for RelyX and Enforce, respectively). Etched enamel and etched ceramic had similar shear bond strengths within cement groups and performed better when RelyX was used. Conclusions: Bonding Ni-Cr to Ni-Cr and ceramic may result in similar and higher bond strength when compared to Ni-Cr/enamel bonding. For metal/metal bonding, higher shear bond strength was achieved with resin cement Enforce, and for metal/ceramic and metal/enamel bonding, RelyX had higher results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate the shear bond strength of repairs in porcelain conditioned with laser. Sixty porcelain discs were made and six groups were formed (n = 10): G1: conditioning with laser with potency 760 mW; G2: conditioning with laser with potency 760 mW and application of 37% phosphoric acid for 15 s; G3: conditioning with laser with potency 900 mW; G4: conditioning with laser with potency 900 mW and application of 37% phosphoric acid for 15 s; G5: application of 37% phosphoric acid for 15 s (group control) and G6: application of 10% hydrofluoric acid for 2 min. The composite resin was insert of incremental layers at the porcelain surface aided with a metal matrix, and photoactivation for 20 s each increment. The specimens were submitted to a thermal cycling by 1000 cycles of 30 s in each bath with temperature between 5 and 55 degrees C. After the thermal cycling, specimens were submitted to the shear bond strength. The results were evaluated statistically through analysis of variance and Tukey's tests with 5% significance. The averages and standard deviation founded were: G1, 11.25 (+/- 3.10); G2, 12.32 (+/- 2.65); G3, 14.02 (+/- 2.38); G4, 13.44 (+/- 2,07); G5, 9.91 (-/+ 2,18); G6, 12.74 (+/- 2.67). The results showed that the femtosecond laser produced a shear bond strength of repairs in porcelain equal to the hydrofluoric acid and significantly superior to the use of phosphoric acid. Microsc. Res. Tech., 2012. (C) 2012 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: This study evaluated the effect of an alkaline solution and two 10-methacryloyloxydecyl dihydrogen phosphate (MDP)-based primer agents on bond strength to zirconia (yttria-stabilized tetragonal zirconium polycrystal [Y-TZP]) through the shear bond strength (SBS) test. Materials and Methods: Sixty square-shaped Y-TZP samples were embedded in an acrylic resin mold, polished, and randomly assigned to one of six groups (n=10) according to treatment surface: group CR, no treatment (control); group NaOH, 0.5 M NaOH; group AP, Alloy Primer; group ZP, Z-Primer Plus; group NaOH-AP, 0.5 M NaOH + Alloy Primer; and group NaOH-ZP, 0.5 M NaOH + Z-Primer Plus. The resin cement (Rely X U100) was applied inside a matrix directly onto the Y-TZP surface, and it was light-cured for 40 seconds. The samples were stored in distilled water at 37 C for 24 hours prior to the test, which was performed in a universal machine at a crosshead-speed of 0.5 mm/min. The data were analyzed by one-way analysis of variance and Tukey tests (p<0.05). Light stereomicroscopy and scanning electron microscopy were used to assess the surface topography and failure mode. Results: The SBS was significantly affected by the chemical treatment (p<0.0001). The AP group displayed the best results, and the use of NaOH did not improve SBS results relative to either AP or ZP. The samples treated with Alloy Primer displayed mainly mixed failures, whereas those conditioned with Z-Primer Plus or with 0.5 M NaOH presented a balanced distribution of adhesive and mixed failure modes. Conclusions: The use of a NaOH solution may have modified the reactivity of the Y-TZP surface, whereas the employment of a MDP/6-4-vinylbenzyl-n-propyl amino-1,3,5-triazine2,4-dithione-based primer enhanced the Y-TZP bond strength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: The purpose of this study was to evaluate the influence of thermal and mechanical cycling and veneering technique on the shear bond strength of Y-TZP (yttrium oxide partially stabilized tetragonal zirconia polycrystal) core–veneer interfaces. Materials and methods: Cylindrical Y-TZP specimens were veneered either by layering (n = 20) or by pressing technique (n = 20). A metal ceramic group (CoCr) was used as control (n = 20). Ten specimens for each group were thermal and mechanical cycled and then all samples were subjected to shear bond strength in a universal testing machine with a 0.5 mm/min crosshead speed. Mean shear bond strength (MPa) was analysed with a 2-way analysis of variance and Tukey’s test ( p < 0.05). Failure mode was determined using stereomicroscopy and scanning electron microscopy (SEM). Results: Thermal and mechanical cycling had no influence on the shear bond strength for all groups. The CoCr group presented the highest bond strength value ( p < 0.05) (34.72 7.05 MPa). There was no significant difference between Y-TZP veneered by layering (22.46 2.08 MPa) or pressing (23.58 2.1 MPa) technique. Failure modes were predominantly adhesive for CoCr group, and cohesive within veneer for Y-TZP groups. Conclusions: Thermal and mechanical cycling, as well as the veneering technique does not affect Y-TZP core–veneer bond strength. Clinical significance: Different methods of veneering Y-TZP restorations would not influence the clinical performance of the core/veneer interfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To evaluate the effect of mechanical cycling and cementation strategies on the push-out bond strength between fiber posts and root dentin and the polymerization stresses produced using three resin cements. Materials and Methods: Eighty bovine mandibular teeth were sectioned to a length of 16 mm, prepared to 12 mm, and embedded in self-curing acrylic resin. The specimens were then distributed into 8 groups (n = 10): Gr1 - Scotchbond Multi Purpose + RelyX ARC; Gr2 - Scotchbond Multi Purpose + RelyX ARC + mechanical cycling; Gr3 - AdheSE + Multilink Automix; Gr4 - AdheSE + Multilink Automix + mechanical cycling; Gr5 - phosphoric acid + RelyX U100 (self-adhesive cement); Gr6 - phosphoric acid+ RelyX U100 + mechanical cycling; Gr7 - RelyX U100; Gr8 - RelyX U100 + mechanical cycling. The values obtained from the push-out bond strength test were submitted to two-way ANOVA and Tukey's test (p = 0.05), while the values obtained from the polymerization stress test were subjected to one-way ANOVA and Tukey's test (alpha = 0.05). Results: Mechanical cycling did not affect the bond strength values (p = 0.236), while cementation strategies affected the push-out bond strength (p < 0.001). Luting with RelyX U100 and Scotch Bond Multi Purpose + RelyX ARC yielded higher push-out bond strength values. The polymerization stress results were affected by the factor "cement" (p = 0.0104): the self-adhesive cement RelyX U100 exhibited the lowest values, RelyX ARC resulted in the highest values, while Multi link Automix presented values statistically similar to the other two cements. Conclusion: The self-adhesive cement appears to be a good alternative for luting fiber posts due to the high push-out bond strengths and lower polymerization stress values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This in vitro study evaluated the bond strength of adhesive restorative materials to sound and eroded dentin. Thirty-six bovine incisors were embedded in acrylic resin and ground to obtain flat buccal dentin surfaces. Specimens were randomly allocated in 2 groups: sound dentin (immersion in artificial saliva) and eroded dentin (pH cycling model - 3x / cola drink for 7 days). Specimens were then reassigned according to restorative material: glass ionomer cement (Ketac (TM) Molar Easy Mix), resin-modified glass ionomer cement (Vitremer (TM)) or adhesive system with resin composite (Adper Single Bond 2 + Filtek Z250). Polyethylene tubes with an internal diameter of 0.76 mm were placed over the dentin and filled with the material. The microshear bond test was performed after 24 h of water storage at 37 degrees C. The failure mode was evaluated using a stereomicroscope (400x). Bond strength data were analyzed with two-way ANOVA and Tukey's post hoc tests (alpha = 0.05). Eroded dentin showed bond strength values similar to those for sound dentin for all materials. The adhesive system showed the highest bond strength values, regardless of the substrate (p < 0.0001). For all groups, the adhesive/mixed failure prevailed. In conclusion, adhesive materials may be used in eroded dentin without jeopardizing the bonding quality. It is preferable to use an etch-and-rinse adhesive system because it shows the highest bond strength values compared with the glass ionomer cements tested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. The aim of this study is to critically evaluate the bond strength (BS) of Glass-Ionomer Cements (GIC) to dentine with microtensile (mu TBS) and microshear (mu SBS) BS tests by assessing their rankings and failure patterns. Methods. Samples were made on flat dentine surfaces and submitted to mTBS and mSBS. The materials used were: high viscosity GIC (Ketac (TM) Molar Aplicap-KM), resin-modified GIC (Fuji II-FII), nano-filled resin-modified GIC (Ketac (TM) N100-N100) and an etch-and-rinse adhesive system with a composite resin (Adper (TM) Single Bond 2 and Z100 (TM)-Z100). All tests were performed with a Universal Testing Machine (24 h water storage, crosshead speed of 1 mm/min). Debonded surfaces were examined with a stereomicroscope (x40) to identify the failure mode. The data was analyzed with two-way ANOVA (p < 0.05) and LSD test. Results. Means were statistically different regarding the tests and materials, indicating that values for BS obtained for each material depend on the test performed. Failure analysis revealed that failures produced by mTBS were mainly cohesive for KM and FII. mu SBS failures were mainly adhesive or mixed for all materials. For the mTBS, the rank was Z100 > FII > KM = N100, whereas for the mSBS it was Z100 = FII = KM > N100. Conclusion: It may be concluded that distinct micro-mechanical tests present different failure patterns and rankings depending on the material to be considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to evaluate the push-out bond strength of fiberglass resin reinforced bonded with five ionomer cements. Also, the interface between cement and dentin was inspected by means of SEM. Fifty human canines were chose after rigorous scrutiny process, endodontically treated and divided randomly into five groups (n = 3) according to cement tested: Group I – Ionoseal (VOCO), Group II – Fugi I (GC), Group III – Fugi II Improved (GC), Group IV – Rely X Luting 2 (3M ESPE), Group V – Ketac Cem (3M ESPE). The post-space was prepared to receive a fiberglass post, which was tried before cementation process. No dentin or post surface pretreatment was carried out. After post bonding, all roots were cross-sectioned to acquire 3 thin-slices (1 mm) from three specific regions of tooth (cervical, medium and apical). A Universal test machine was used to carry out the push-out test with cross-head speed set to 0.5mm/mim. All failed specimens were observed under optical microscope to identify the failure mode. Representative specimens from each group was inspected under SEM. The data were analyzed by Kolmogorov-Smirnov and Levene’s tests and by two-way ANOVA, and Tukey’s port hoc test at a significance level of 5%. It was compared the images obtained for determination of types of failures more occurred in different levels. SEM inspection displayed that all cements filled the space between post and dentin, however, some imperfections such bubles and voids were noticed in all groups in some degree of extension. The push-out bond strength showed that cement Ketac Cem presented significant higher results when compared to the Ionoseal (P = 0.02). There were no statistical significant differences among other cements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate the influence of microstructure and composition of basic alloys on their microshear bond strength (µSBS) to resin luting cement. The alloys used were: Supreme Cast-V (SC), Tilite Star (TS), Wiron 99 (W9), VeraBond II (VBII), VeraBond (VB), Remanium (RM) and IPS d.SIGN 30 (IPS). Five wax patterns (13mm in diameter and 4mm height) were invested, and cast in a centrifugal casting machine for each basic alloy. The specimens were embedded in resin, polished with a SiC paper and sandblasted. After cleaning the metal surfaces, six tygon tubes (0.5 mm height and 0.75 mm in diameter) were placed on each alloy surface, the resin cement (Panavia F) was inserted, and the excess was removed before light-curing. After storage (24 h/37°C), the specimens were subjected to µSBS testing (0.5 mm/min). The data were subjected to a one-way repeated measures analysis of variance and Turkey's test (α=0.05). After polishing, their microstructures were revealed with specific conditioners. The highest µSBS (mean/standard deviation in MPa) were observed in the alloys with dendritic structure, eutectic formation or precipitation: VB (30.6/1.7), TS (29.8/0.9), SC (30.6/1.7), with the exception of IPS (31.1/0.9) which showed high µSBS but no eutectic formation. The W9 (28.1/1.5), VBII (25.9/2.0) and RM (25.9/0.9) showed the lowest µSBS and no eutectic formation. It seems that alloys with eutectic formation provide the highest µSBS values when bonded to a light-cured resin luting cement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To assess the microshear bond strength of 3 experimental adhesives with different degrees of hydrophilicity after 1, 7 and 90 days of storage. Materials and Methods: The bonding effectiveness of three experimental two-step etch-and-rinse adhesives (bis-GMA, bis-EMA/bis-GMA, polybutadiene [C6H12]) and one commercial adhesive (Single Bond) to sound hydrated dentin was determined using the nnicroshear test with delimitation of the adhesive area after 1, 7, and 90 days of storage in water at 37 degrees C. Two-way ANOVA was performed at the 0.05 probability level. The fractures were classified as adhesive, cohesive in dentin, cohesive in resin, and mixed. Results: The experimental adhesives showed values in the range of 11.31 to 12.96 MPa, with polybutadiene (PBH) showing the lowest bond strengths, bis-GMA the highest, and bis-EMA/bis-GMA intermediary values. Single Bond yielded bond strengths of approximately 24 MPa. Water storage decreased the bond strength in all adhesives. Adhesive fractures were predominant in experimental adhesives, while mixed fractures were the most frequent type in the Single Bond group. Conclusion: The experimental dentin adhesives of this study were able to form resin tags, but they could not penetrate into the collagen fibers and form hybrid layers. The resulting low bond strength decreased with increasing length of storage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To evaluate whether Nd:YAG laser irradiation of etched and unetched dentin through an uncured adhesive affected the microtensile bond strength (pTBS). Materials and Methods: Flat dentin surfaces were created in 19 extracted human third molars. Adper Single Bond (SB) adhesive was applied over etched (groups 1 to 3) or unetched dentin (groups 4 to 6). The dentin was then irradiated with a Nd:YAG laser through the uncured adhesive, using 0.75 or 1 W power settings, except for the control groups (groups 1 and 4). The adhesive was light cured and composite crowns were built up. After 24 h, the teeth were sectioned into beams, with cross-sectional areas of 0.49 mm(2), and were stressed under tension. Data were statistically analyzed using two-way ANOVA and Tukey's test (alpha = 5%). Dentin surfaces of fractured specimens and the interfaces of untested beams were observed under scanning electron microscopy (SEM). Results: Acid etching, laser irradiation, and their interaction significantly affected bonding (p < 0.05). Laser irradiation did not improve bonding of etched dentin to resin (p > 0.05). However, higher pTBS means were found on unetched lased dentin (groups 5 and 6), but only in comparison to group 4, where neither lasing nor etching was performed. Groups 4 to 6 showed the lowest pTBS means among all groups tested (p < 0.05). Laser irradiation did not change the characteristics of the hybrid layers created, while solidification globules were observed on lased dentin surfaces under SEM. Conclusion: Laser irradiation of dentin through the uncured adhesive did not significantly improve the pTBS in comparison to the suggested manufacturer's technique.