1 resultado para Series, Infinite.
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Filtro por publicador
- Adam Mickiewicz University Repository (1)
- Applied Math and Science Education Repository - Washington - USA (2)
- Aquatic Commons (16)
- Archive of European Integration (54)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (11)
- Aston University Research Archive (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (2)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- Boston University Digital Common (9)
- Brock University, Canada (7)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (14)
- Cambridge University Engineering Department Publications Database (115)
- CentAUR: Central Archive University of Reading - UK (7)
- Center for Jewish History Digital Collections (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (89)
- Cochin University of Science & Technology (CUSAT), India (11)
- Collection Of Biostatistics Research Archive (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Diposit Digital de la UB - Universidade de Barcelona (2)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (7)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (5)
- Funes: Repositorio digital de documentos en Educación Matemática - Colombia (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (3)
- Greenwich Academic Literature Archive - UK (9)
- Helda - Digital Repository of University of Helsinki (16)
- Indian Institute of Science - Bangalore - Índia (164)
- Instituto Politécnico do Porto, Portugal (5)
- Massachusetts Institute of Technology (4)
- Ministerio de Cultura, Spain (22)
- National Center for Biotechnology Information - NCBI (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (38)
- Portal de Revistas Científicas Complutenses - Espanha (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (123)
- Queensland University of Technology - ePrints Archive (154)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (3)
- Repositorio Institucional de la Universidad Nacional Agraria (1)
- Royal College of Art Research Repository - Uninet Kingdom (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- School of Medicine, Washington University, United States (6)
- Universidad Autónoma de Nuevo León, Mexico (6)
- Universidad del Rosario, Colombia (4)
- Universidade de Lisboa - Repositório Aberto (1)
- Universitat de Girona, Spain (7)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (5)
- Université de Lausanne, Switzerland (5)
- Université de Montréal, Canada (22)
- University of Michigan (12)
- University of Queensland eSpace - Australia (1)
- University of Southampton, United Kingdom (2)
- University of Washington (6)
- WestminsterResearch - UK (4)
- Worcester Research and Publications - Worcester Research and Publications - UK (2)
Resumo:
This work deals with the solvability near the characteristic set Sigma = {0} x S-1 of operators of the form L = partial derivative/partial derivative t+(x(n) a(x)+ ix(m) b(x))partial derivative/partial derivative x, b not equivalent to 0 and a(0) not equal 0, defined on Omega(epsilon) = (-epsilon, epsilon) x S-1, epsilon > 0, where a and b are real-valued smooth functions in (-epsilon, epsilon) and m >= 2n. It is shown that given f belonging to a subspace of finite codimension of C-infinity (Omega(epsilon)) there is a solution u is an element of L-infinity of the equation Lu = f in a neighborhood of Sigma; moreover, the L-infinity regularity is sharp.