6 resultados para Sclerotiorum
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Some species of Trichoderma have successfully been used in the commercial biological control of fungal pathogens, e.g., Sclerotinia sclerotiorum, an economically important pathogen of common beans (Phaseolus vulgaris L.). The objectives of the present study were (1) to provide molecular characterization of Trichoderma strains isolated from the Brazilian Cerrado; (2) to assess the metabolic profile of each strain by means of Biolog FF Microplates; and (3) to evaluate the ability of each strain to antagonize S. sclerotiorum via the production of cell wall-degrading enzymes (CWDEs), volatile antibiotics, and dual-culture tests. Among 21 isolates, we identified 42.86 % as Trichoderma asperellum, 33.33 % as Trichoderma harzianum, 14.29 % as Trichoderma tomentosum, 4.76 % as Trichoderma koningiopsis, and 4.76 % as Trichoderma erinaceum. Trichoderma asperellum showed the highest CWDE activity. However, no species secreted a specific group of CWDEs. Trichoderma asperellum 364/01, T. asperellum 483/02, and T. asperellum 356/02 exhibited high and medium specific activities for key enzymes in the mycoparasitic process, but a low capacity for antagonism. We observed no significant correlation between CWDE and antagonism, or between metabolic profile and antagonism. The diversity of Trichoderma species, and in particular of T. harzianum, was clearly reflected in their metabolic profiles. Our findings indicate that the selection of Trichoderma candidates for biological control should be based primarily on the environmental fitness of competitive isolates and the target pathogen. (C) 2012 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Resumo:
The scanning electron microscopy (SEM) analysis showed that whole living hyphal of marine fungi Aspergillus sclerotiorum CBMAI 849 and Penicillium citrinum CBMAI 1186 were immobilized on support matrices of silica gel, silica xerogel and/or chitosan. P. citrinum immobilized on chitosan catalyzed the quantitative reduction of 1-(4-methoxyphenyl)-ethanone (1) to the enantiomer (S)-1-(4-methoxyphenyl)-ethanol (3b), with excellent enantioselectivity (ee > 99%, yield = 95%). Interestingly, ketone 1 was reduced with moderate selectivity and conversion to alcohol 3b (ee = 69%, c 40%) by the free mycelium of P. citrinum. This free mycelium of P. citrinum catalyzed the production of the (R)-alcohol 3a, the antipode of the alcohol produced by the immobilized cells. P. citrinum immobilized on chitosan also catalyzed the bioreduction of 2-chloro-1-phenylethanone (2) to 2-chloro-1-phenylethanol (4a,b), but in this case without optical selectivity. These results showed that biocatalytic reduction of ketones by immobilization hyphal of marine fungi depends on the xenobiotic substrate and the support matrix used. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
Fungi are disease-causing agents in plants and affect crops of economic importance. One control method is to induce resistance in the host by using biological control with hypovirulent phytopathogenic fungi. Here, we report the detection of a mycovirus in a strain of Colletotrichum gloeosporioides causing anthracnose of cashew tree. The strain C. gloeosporioides URM 4903 was isolated from a cashew tree (Anacardium occidentale) in Igarassu, PE, Brazil. After nucleic acid extraction and electrophoresis, the band corresponding to a possible double-stranded RNA (dsRNA) was purified by cellulose column chromatography. Nine extrachromosomal bands were obtained. Enzymatic digestion with DNAse I and Nuclease S1 had no effect on these bands, indicating their dsRNA nature. Transmission electron microscopic examination of extracts from this strain showed the presence of isometric particles (30-35 nm in diameter). These data strongly suggest the infection of this C. gloeosporioides strain by a dsRNA mycovirus. Once the hypovirulence of this strain is confirmed, the strain may be used for the biological control of cashew anthracnose.
Resumo:
Nine marine fungi (Aspergillus sclerotiorum CBMAI 849, Aspergillus sydowii Ce19, Beauveria felina CBMAI 738, Mucor racemosus CBMAI 847, Penicillium citrinum CBMAI 1186, Penicillium miczynskii Ce16, P. miczynskii Gc5, Penicillium oxalicum CBMAI 1185, and Trichoderma sp. Gc1) catalyzed the asymmetric bioconversion of iodoacetophenones 1-3 to corresponding iodophenylethanols 6-8. All the marine fungi produced exclusively (S)-ortho-iodophenylethanol 6 and (S)-meta-iodophenylethanol 7 in accordance to the Prelog rule. B. felina CBMAI 738, P. miczynskii Gc5, P. oxalicum CBMAI 1185, and Trichoderma sp. Gc1 produced (R)-para-iodophenylethanol 8 as product anti-Prelog. The bioconversion of para-iodoacetophenone 3 with whole cells of P. oxalicum CBMAI 1185 showed competitive reduction-oxidation reactions.
Resumo:
The sugarcane root endophyte Trichoderma virens 223 holds enormous potential as a sustainable alternative to chemical pesticides in the control of sugarcane diseases. Its efficacy as a biocontrol agent is thought to be associated with its production of chitinase enzymes, including N-acetyl-beta-D-glucosaminidases, chitobiosidases and endochitinases. We used targeted gene deletion and RNA-dependent gene silencing strategies to disrupt N-acetyl-beta-D-glucosaminidase and endochitinase activities of the fungus, and to determine their roles in the biocontrol of soil-borne plant pathogens. The loss of N-acetyl-beta-D-glucosaminidase activities was dispensable for biocontrol of the plurivorous damping-off pathogens Rhizoctonia solani and Sclerotinia sclerotiorum, and of the sugarcane pathogen Ceratocystis paradoxa, the causal agent of pineapple disease. Similarly, suppression of endochitinase activities had no effect on R. solani and S. sclerotiorum disease control, but had a pronounced effect on the ability of T. virens 223 to control pineapple disease. Our work demonstrates a critical requirement for T. virens 223 endochitinase activity in the biocontrol of C. paradoxa sugarcane disease, but not for general antagonism of other soil pathogens. This may reflect its lifestyle as a sugarcane root endophyte.
Resumo:
Nine strains of marine-derived fungi (Aspergillus sydowii Ce15, A. sydowii Ce19, Aspergillus sclerotiorum CBMAI 849, Bionectria sp. Ce5, Beauveria felina CBMAI 738, Cladosporium cladosporioides CBMAI 857, Mucor racemosus CBMAI 847, Penicillium citrinum CBMAI 1186, and Penicillium miczynskii Gc5) were screened, catalyzing the asymmetric bioreduction of 1-(4-methoxyphenyl) ethanone 1 to its corresponding 1-(4-methoxyphenyl) ethanol 2. A. sydowii Ce15 and Bionectria sp. Ce5 produced the enantiopure (R)-alcohol 2 (>99% ee) in accordance with the anti-Prelog rule and, the fungi B. felina CBMAI 738 (>99% ee) and P. citrinum CBMAI 1186 (69% ee) in accordance with the Prelog rule. Stereoselective bioreduction by whole cells of marine-derived fungi described by us is important for the production of new reductases from marine-derived fungi.