7 resultados para Sacro Monte
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The extrapolation chamber is a parallel-plate ionization chamber that allows variation of its air-cavity volume. In this work, an experimental study and MCNP-4C Monte Carlo code simulations of an ionization chamber designed and constructed at the Calibration Laboratory at IFEN to be used as a secondary dosimetry standard for low-energy X-rays are reported. The results obtained were within the international recommendations, and the simulations showed that the components of the extrapolation chamber may influence its response up to 11.0%. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In this work, a Monte Carlo code was used to investigate the performance of different x-ray spectra in digital mammography, through a figure of merit (FOM), defined as FOM = CNR2/(D) over bar (g), with CNR being the contrast-to-noise ratio in image and (D) over bar (g) being the average glandular dose. The FOM was studied for breasts with different thicknesses t (2 cm <= t <= 8 cm) and glandular contents (25%, 50% and 75% glandularity). The anode/filter combinations evaluated were those traditionally employed in mammography (Mo/Mo, Mo/Rh, Rh/Rh), and a W anode combined with Al or K-edge filters (Zr, Mo, Rh, Pd, Ag, Cd, Sn), for tube potentials between 22 and 34 kVp. Results show that the W anode combined with K-edge filters provides higher values of FOM for all breast thicknesses investigated. Nevertheless, the most suitable filter and tube potential depend on the breast thickness, and for t >= 6 cm, they also depend on breast glandularity. Particularly for thick and dense breasts, a W anode combined with K-edge filters can greatly improve the digital technique, with the values of FOM up to 200% greater than that obtained with the anode/filter combinations and tube potentials traditionally employed in mammography. For breasts with t < 4 cm, a general good performance was obtained with the W anode combined with 60 mu m of the Mo filter at 24-25 kVp, while 60 mu m of the Pd filter provided a general good performance at 24-26 kVp for t = 4 cm, and at 28-30 and 29-31 kVp for t = 6 and 8 cm, respectively.
Resumo:
Using fixed node diffusion quantum Monte Carlo (FN-DMC) simulations and density functional theory (DFT) within the generalized gradient approximations, we calculate the total energies of the relaxed and unrelaxed neutral, cationic, and anionic aluminum clusters, Al-n (n = 1-13). From the obtained total energies, we extract the ionization potential and electron detachment energy and compare with previous theoretical and experimental results. Our results for the electronic properties from both the FN-DMC and DFT calculations are in reasonably good agreement with the available experimental data. A comparison between the FN-DMC and DFT results reveals that their differences are a few tenths of electron volt for both the ionization potential and the electron detachment energy. We also observe two distinct behaviors in the electron correlation contribution to the total energies from smaller to larger clusters, which could be assigned to the structural transition of the clusters from planar to three-dimensional occurring at n = 4 to 5.
Resumo:
The extension of Boltzmann-Gibbs thermostatistics, proposed by Tsallis, introduces an additional parameter q to the inverse temperature beta. Here, we show that a previously introduced generalized Metropolis dynamics to evolve spin models is not local and does not obey the detailed energy balance. In this dynamics, locality is only retrieved for q = 1, which corresponds to the standard Metropolis algorithm. Nonlocality implies very time-consuming computer calculations, since the energy of the whole system must be reevaluated when a single spin is flipped. To circumvent this costly calculation, we propose a generalized master equation, which gives rise to a local generalized Metropolis dynamics that obeys the detailed energy balance. To compare the different critical values obtained with other generalized dynamics, we perform Monte Carlo simulations in equilibrium for the Ising model. By using short-time nonequilibrium numerical simulations, we also calculate for this model the critical temperature and the static and dynamical critical exponents as functions of q. Even for q not equal 1, we show that suitable time-evolving power laws can be found for each initial condition. Our numerical experiments corroborate the literature results when we use nonlocal dynamics, showing that short-time parameter determination works also in this case. However, the dynamics governed by the new master equation leads to different results for critical temperatures and also the critical exponents affecting universality classes. We further propose a simple algorithm to optimize modeling the time evolution with a power law, considering in a log-log plot two successive refinements.
Resumo:
Introduction: Entamoeba histolytica infections were investigated in residents of the Ariquemes and Monte Negro municipalities in Rondônia State, Brazil. Methods: Stool samples of 216 individuals were processed by the spontaneous sedimentation method and analyzed by microscopy for detection of the E. histolytica/E. dispar complex, followed by the immunoassay method using an enzyme-linked immunosorbent assay-based kit for the E. histolytica stool antigen. Results: E. histolytica/E. dispar cysts were present in 61% (50/82) and 44% (59/134) of the samples from Ariquemes and Monte Negro respectively, with a significant difference in the occurrence of infection between the two populations [p < 0.05; χ2 = 5.2; odds ratio = 2.0 (1.1 - 3.6)]. The E. histolytica antigen detection rate was 36.6% (30/82) for stool samples from Ariquemes, and 19.4% (26/134) for stool taken from the residents of Monte Negro. The rate of the occurrence of amoebiasis was significantly higher in the population from Ariquemes [p < 0.05; χ2= 7.8; odds ratio = 2.4 (1.2 - 4.7)]. Discussion: Due to the high occurrence of E. histolytica infected residents diagnosed in the region and the unavailability in local clinics of a test to distinguish between the two Entamoeba species, physicians should consider treating E. histolytica/E.dispar infections. Conclusion: The results indicate that E. histolytica infection is highly endemic in the studied areas.
Resumo:
INTRODUCTION: This work was carried out on the purpose of identifying the species of phlebotomine sandflies in the municipality of Monte Negro, state of Rondonia, Brazil, that may have been transmitting the American cutaneous leishmaniasis (ACL), and concisely describe epidemiological aspects of disease. METHODS: The epidemiologic and socioeconomical indicators were obtained from government institutions and the local Municipal Secretary of Health. Phlebotomine sandflies were captured using CDC light traps between July 2006 to July 2008. The total of 1,240 of female sandflies were examined by PCR method directed to k-DNA. RESULTS: There has been a significant decrease in the incidence of ACL of about 50% over the last ten years in the municipality. A total of 1,935 specimens of 53 sandfly species were captured, three of the genus Brumptomyia genus and 50 of the genus Lutzomyia. The predominant species was Lutzomyia acanthopharynx, Lutzomyia whitmani, Lutzomyia geniculata and Lutzomyia davisi. None were positive for Leishmania sp. CONCLUSIONS: Four sandflies species were found in the State of Rondonia for the first time: Brumptomyia brumpti, Lutzomyia tarapacaensis, Lutzomyia melloi and Lutzomyia lenti. The presence of Lutzomyia longipalpis, was also captured. Socioeconomical improvement of Brazilian economy and the increase of environmental surveillance in the last 15 years collaborated in the decrease of people exposed to vectors, reducing the incidence of ACL.
Resumo:
A detailed characterization of a X-ray Si(Li) detector was performed to obtain the energy dependence of efficiency in the photon energy range of 6.4 - 59.5 keV. which was measured and reproduced by Monte Carlo (MC) simulations. Significant discrepancies between MC and experimental values were found when lhe manufacturer parameters of lhe detector were used in lhe simulation. A complete Computerized Tomagraphy (CT) detector scan allowed to find the correct crystal dimensions and position inside the capsule. The computed efficiencies with the resulting detector model differed with the measured values no more than 10% in most of the energy range.