14 resultados para SSR loci
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Premise of the study: A set of eight microsatellite (simple sequence repeat [SSR]) markers for Lippia alba, an important medicinal and cosmetic plant, was developed to aid studies of genetic diversity and to define efficient strategies for breeding programs. Methods and Results: Using a (CT)(8)- and (GT)(8)-enriched library, a total of 11 SSR loci were developed and optimized in L. alba. Of the 11 loci, eight were found to be polymorphic after screening 61 accessions from two populations. The parameters used to characterize loci were expected heterozygosity (H-e) and number of alleles. A total of 44 alleles were identified, with an average of 5.5 alleles per loci, which were moderately to highly informative according to H-e. Conclusions: These new SSR markers have potential for informing genetic diversity, allele mining, and mapping studies and will be used to generate information for breeding programs of L. alba
Resumo:
The study of the genetic structure of wild plant populations is essential for their management and conservation. Several DNA markers have been used in such studies, as well as isozyme markers. In order to provide a better comprehension of the results obtained and a comparison between markers which will help choose tools for future studies in natural populations of Oryza glumaepatula, a predominantly autogamous species, this study used both isozymes and microsatellites to assess the genetic diversity and genetic structure of 13 populations, pointing to similarities and divergences of each marker, and evaluating the relative importance of the results for studies of population genetics and conservation. A bulk sample for each population was obtained, by sampling two to three seeds of each plant, up to a set of 50 seeds. Amplified products of eight SSR loci were electrophoresed on non-denaturing polyacrylamide gels, and the fragments were visualized using silver staining procedure. Isozyme analyses were conducted in polyacrylamide gels, under a discontinuous system, using six enzymatic loci. SSR loci showed higher mean levels of genetic diversity (A=2.83, p=0.71, A(P)=3.17, H-o=0.081, H-e=0.351) than isozyme loci (A=1.20, p=0.20, A(P)=1.38, H-o=0.006, H-e=0.056). Interpopulation genetic differentiation detected by SSR loci (R-ST=0.631, equivalent to F-ST=0.533) was lower than that obtained with isozymes (F-ST=0.772). However, both markers showed high deviation from Hardy-Weinberg expectations (F-IS=0.744 and 0.899, respectively for SSR and isozymes). The mean apparent outcrossing rate for SSR ((t) over bar (a)=0.14) was higher than that obtained using isozymes ((t) over bar (a)=0.043), although both markers detected lower levels of outcrossing in Amazonia compared to the Pantanal. The migrant number estimation was also higher for SSR (Nm=0.219) than isozymes (Nm=0.074), although a small number for both markers was expected due to the mode of reproduction of this species, defined as mixed with predominance of self fertilization. No correlation was obtained between genetic and geographic distances with SSR, but a positive correlation was found between genetic and geographic distances with isozymes. We conclude that these markers are divergent in detecting genetic diversity parameters in O. glumaepatula and that microsatellites are powerful for detecting information at the intra-population level, while isozymes are more powerful for inter-population diversity, since clustering of populations agreed with the expectations based on the geographic distribution of the populations using this marker. Rev. Biol. Trop. 60 (4): 1463-1478. Epub 2012 December 01.
Resumo:
Premise of the study: A new set of microsatellite or simple sequence repeat (SSR) markers for garlic, an important medicinal spice, was developed to aid studies of genetic diversity and to define efficient strategies for germplasm conservation. Methods and Results: Using a (CT)(8)- and (GT)(8)-enriched library, a total of 16 SSR loci were developed and optimized in garlic. Ten loci were found to be polymorphic after screening 75 accessions. The parameters used to characterize the loci were observed and expected heterozygosity, number of alleles, Shannon Index, and polymorphism information content (PIC). A total of 44 alleles were identified, with an average of 4.4 alleles per loci. The vast majority of loci were moderate to highly informative according to PIC and the Shannon Index. Conclusion: The new SSR markers have the potential to be informative tools for genetic diversity, allele mining, mapping and associative studies, and in the management and conservation of garlic collections.
Resumo:
Abstract Background Banana cultivars are mostly derived from hybridization between wild diploid subspecies of Musa acuminata (A genome) and M. balbisiana (B genome), and they exhibit various levels of ploidy and genomic constitution. The Embrapa ex situ Musa collection contains over 220 accessions, of which only a few have been genetically characterized. Knowledge regarding the genetic relationships and diversity between modern cultivars and wild relatives would assist in conservation and breeding strategies. Our objectives were to determine the genomic constitution based on Internal Transcribed Spacer (ITS) regions polymorphism and the ploidy of all accessions by flow cytometry and to investigate the population structure of the collection using Simple Sequence Repeat (SSR) loci as co-dominant markers based on Structure software, not previously performed in Musa. Results From the 221 accessions analyzed by flow cytometry, the correct ploidy was confirmed or established for 212 (95.9%), whereas digestion of the ITS region confirmed the genomic constitution of 209 (94.6%). Neighbor-joining clustering analysis derived from SSR binary data allowed the detection of two major groups, essentially distinguished by the presence or absence of the B genome, while subgroups were formed according to the genomic composition and commercial classification. The co-dominant nature of SSR was explored to analyze the structure of the population based on a Bayesian approach, detecting 21 subpopulations. Most of the subpopulations were in agreement with the clustering analysis. Conclusions The data generated by flow cytometry, ITS and SSR supported the hypothesis about the occurrence of homeologue recombination between A and B genomes, leading to discrepancies in the number of sets or portions from each parental genome. These phenomenons have been largely disregarded in the evolution of banana, as the “single-step domestication” hypothesis had long predominated. These findings will have an impact in future breeding approaches. Structure analysis enabled the efficient detection of ancestry of recently developed tetraploid hybrids by breeding programs, and for some triploids. However, for the main commercial subgroups, Structure appeared to be less efficient to detect the ancestry in diploid groups, possibly due to sampling restrictions. The possibility of inferring the membership among accessions to correct the effects of genetic structure opens possibilities for its use in marker-assisted selection by association mapping.
Resumo:
Typical antbirds (similar to 209 species) represent a diverse radiation of Neotropical birds that includes many species of conservation concern. Here we present eight anonymous nuclear loci designed for the squamate antbird Myrmeciza squamosa, a species endemic to the Atlantic Forest of Brazil. We also show that those anonymous nuclear loci are amplifiable in a number of other typical antbird species from related genera (Myrmeciza, Percnostola, Gymnocichla, Myrmoborus, Pyriglena and Formicivora), including three threatened species (Myrmeciza ruficauda, Formicivora littoralis, and Pyriglena atra). Those markers will be useful not only to help management of threatened species of typical antbirds, but also to explore their evolutionary histories, both at intra and interspecific levels.
Resumo:
In the present study, a microsatellite-enriched genomic library was constructed and primers for 14 microsatellite loci were designed for Xylocopa frontalis. Twenty unrelated individuals were screened. All loci were polymorphic and the number of alleles per locus ranged from 6 to 17 (x = 10.43). Observed (H-o) and expected (H-e) heterozygosities ranged from 0.350 to 0.950 and 0.674 to 0.898, respectively. All loci were in Hardy-Weinberg equilibrium, except one. The microsatellite loci described in this study will contribute towards general biology studies of X. frontalis, intranidal genetic relationships and nest management for the pollination of passion fruit.
Resumo:
Mischocyttarus cassununga, a primitively eusocial Brazilian wasp, commonly found in urban environments, is an interesting model for studies on the evolution of social behaviour in hymenopteran insects. In this study, we constructed a microsatellite-enriched genomic library and presented primers for 18 microsatellite loci. For the analysis, 20 unrelated females were screened and all loci obtained were polymorphic. PCR amplification revealed from 3 (Mcas5b) to 17 (Mcas53b) alleles per locus (). We detected the levels of observed (H (o)) and expected (H (e)) heterozygosities ranging from 0.150 to 0.950 and 0.261 to 0.920, respectively. The polymorphic information content ranged from 0.238 to 0.915, averaging 0.680. All loci were in Hardy-Weinberg equilibrium and linkage disequilibrium was not detected after sequential Bonferroni correction (P > 0.05). These molecular markers will allow further studies on sociogenetic structure, extensive population genetic analysis and diversity of M. cassununga and other Mischocyttarini species.
Resumo:
Acrocomia aculeata is a perennial, fruit-producing palm tree, native to tropical forests. Its fruits have spurred interest because of their significant potential for use in the cosmetic industry and as feedstock for biofuel. In the present study, the genetic structure and mating system in Acrocomia aculeata were analyzed, using eight nuclear microsatellite loci and samples from Sao Paulo and Minas Gerais states, Brazil. By means of Bayesian analysis, these populations were clustered into two or three groups. A high multilocus outcrossing rate suggests that outcrosses were predominant, although a certain degree of biparental inbreeding also occurred. Thus, although monoecious and self-compatible, there is every indication that A. aculeata bears a mixed reproductive system, with a predominance of outcrossing. Given the genetic structure revealed hereby, future conservation strategies and germplasm collecting should be focussed on sampling and preserving individuals from different clusters.
Resumo:
Premise of the study: Microsatellite loci were developed for tucuma of Amazonas (Astrocaryum aculeatum), and cross-species amplification was performed in six other Arecaceae, to investigate genetic diversity and population structure and to provide support for natural populations management. Methods and Results: Fourteen microsatellite loci were isolated from a microsatellite-enriched genomic library and used to characterize two wild populations of tucuma of Amazonas (Manaus and Manicore cities). The investigated loci displayed high polymorphism for both A. aculeatum populations, with a mean observed heterozygosity of 0.498. Amplification rates ranging from 50% to 93% were found for four Astrocaryum species and two additional species of Arecaceae. Conclusions: The information derived from the microsatellite markers developed here provides significant gains in conserved allelic richness and supports the implementation of several molecular breeding strategies for the Amazonian tucuma.
Resumo:
Metrodorea nigra (Rutaceae) is an endemic Brazilian tree of great ecological importance, frequently found in the submontane regions of ombrophilous dense and semideciduous forests. This tree is useful for reforesting degraded areas and the wood can be employed in construction. We developed 12 microsatellite markers from a genomic library enriched for GA/CA repeats, for this species. Polymorphisms were assessed in 40 trees of a highly fragmented population found in Cravinhos, State of Sao Paulo, in southeastern Brazil. Among the 12 loci, 8 were polymorphic and only one had fixed alleles in this population. The number of alleles per locus and expected heterozygosity ranged from 2 to 11 and from 0.190 to 0.889, respectively. These results revealed moderate levels of genetic variation in M. nigra population when compared to other tropical species. Additionally, transferability of the 12 primers was tested in seven other Brazilian Rutaceae tree species (endemics: M. stipularis, Galipea jasminiflora, Esenbeckia leiocarpa and non-endemics: E. febrifuga, E. grandiflora, Balfourodendron riedelianum, Zanthoxylum riedelianum). Transferability ranged among species, but at least 8 loci (similar to 67%) amplified in M. stipularis, demonstrating a high potential for transferring microsatellite markers between species of the same genus in the Rutaceae family.
Resumo:
Oil content and grain yield in maize are negatively correlated, and so far the development of high-oil high-yielding hybrids has not been accomplished. Then a fully understand of the inheritance of the kernel oil content is necessary to implement a breeding program to improve both traits simultaneously. Conventional and molecular marker analyses of the design III were carried out from a reference population developed from two tropical inbred lines divergent for kernel oil content. The results showed that additive variance was quite larger than the dominance variance, and the heritability coefficient was very high. Sixteen QTL were mapped, they were not evenly distributed along the chromosomes, and accounted for 30.91% of the genetic variance. The average level of dominance computed from both conventional and QTL analysis was partial dominance. The overall results indicated that the additive effects were more important than the dominance effects, the latter were not unidirectional and then heterosis could not be exploited in crosses. Most of the favorable alleles of the QTL were in the high-oil parental inbred, which could be transferred to other inbreds via marker-assisted backcross selection. Our results coupled with reported information indicated that the development of high-oil hybrids with acceptable yields could be accomplished by using marker-assisted selection involving oil content, grain yield and its components. Finally, to exploit the xenia effect to increase even more the oil content, these hybrids should be used in the Top Cross((TM)) procedure.
Resumo:
Premise of the study: We developed and characterized nuclear microsatellite markers for Anadenanthera colubrina, a tropical tree species widely distributed in South America. Methods and Results: Leaf samples of mature A. colubrina trees, popularly called "angico," were collected from an area that is greatly impacted by agricultural practices in the region of Ribeirao Preto in Sao Paulo State in southeastern Brazil. Twenty simple sequence repeat (SSR) markers were developed, 14 of which had polymorphic loci. A total of 96 alleles were detected with an average of 6.86 alleles per polymorphic locus. The expected heterozygosity, calculated at polymorphic loci, ranged from 0.18 to 0.83. Finally, we demonstrated that 18 loci were cross-amplified in A. peregrina. Conclusions: A total of 14 polymorphic markers suggest a high potential for genetic diversity, gene flow, and mating system analyses in A. colubrina.
Resumo:
Abstract Background In tropical countries, losses caused by bovine tick Rhipicephalus (Boophilus) microplus infestation have a tremendous economic impact on cattle production systems. Genetic variation between Bos taurus and Bos indicus to tick resistance and molecular biology tools might allow for the identification of molecular markers linked to resistance traits that could be used as an auxiliary tool in selection programs. The objective of this work was to identify QTL associated with tick resistance/susceptibility in a bovine F2 population derived from the Gyr (Bos indicus) × Holstein (Bos taurus) cross. Results Through a whole genome scan with microsatellite markers, we were able to map six genomic regions associated with bovine tick resistance. For most QTL, we have found that depending on the tick evaluation season (dry and rainy) different sets of genes could be involved in the resistance mechanism. We identified dry season specific QTL on BTA 2 and 10, rainy season specific QTL on BTA 5, 11 and 27. We also found a highly significant genome wide QTL for both dry and rainy seasons in the central region of BTA 23. Conclusions The experimental F2 population derived from Gyr × Holstein cross successfully allowed the identification of six highly significant QTL associated with tick resistance in cattle. QTL located on BTA 23 might be related with the bovine histocompatibility complex. Further investigation of these QTL will help to isolate candidate genes involved with tick resistance in cattle.
Resumo:
Abstract Background The database of sugarcane expressed sequence tags (EST) offers a great opportunity for developing molecular markers that are directly associated with important agronomic traits. The development of new EST-SSR markers represents an important tool for genetic analysis. In sugarcane breeding programs, functional markers can be used to accelerate the process and select important agronomic traits, especially in the mapping of quantitative traits loci (QTL) and plant resistant pathogens or qualitative resistance loci (QRL). The aim of this work was to develop new simple sequence repeat (SSR) markers in sugarcane using the sugarcane expressed sequence tag (SUCEST database). Findings A total of 365 EST-SSR molecular markers with trinucleotide motifs were developed and evaluated in a collection of 18 genotypes of sugarcane (15 varieties and 3 species). In total, 287 of the EST-SSRs markers amplified fragments of the expected size and were polymorphic in the analyzed sugarcane varieties. The number of alleles ranged from 2-18, with an average of 6 alleles per locus, while polymorphism information content values ranged from 0.21-0.92, with an average of 0.69. The discrimination power was high for the majority of the EST-SSRs, with an average value of 0.80. Among the markers characterized in this study some have particular interest, those that are related to bacterial defense responses, generation of precursor metabolites and energy and those involved in carbohydrate metabolic process. Conclusions These EST-SSR markers presented in this work can be efficiently used for genetic mapping studies of segregating sugarcane populations. The high Polymorphism Information Content (PIC) and Discriminant Power (DP) presented facilitate the QTL identification and marker-assisted selection due the association with functional regions of the genome became an important tool for the sugarcane breeding program.