9 resultados para SIFT,Computer Vision,Python,Object Recognition,Feature Detection,Descriptor Computation
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Cognitive dysfunction is found in patients with brain tumors and there is a need to determine whether it can be replicated in an experimental model. In the present study, the object recognition (OR) paradigm was used to investigate cognitive performance in nude mice, which represent one of the most important animal models available to study human tumors in vivo. Mice with orthotopic xenografts of the human U87MG glioblastoma cell line were trained at 9, 14, and 18days (D9, D14, and D18, respectively) after implantation of 5×10(5) cells. At D9, the mice showed normal behavior when tested 90min or 24h after training and compared to control nude mice. Animals at D14 were still able to discriminate between familiar and novel objects, but exhibited a lower performance than animals at D9. Total impairment in the OR memory was observed when animals were evaluated on D18. These alterations were detected earlier than any other clinical symptoms, which were observed only 22-24days after tumor implantation. There was a significant correlation between the discrimination index (d2) and time after tumor implantation as well as between d2 and tumor volume. These data indicate that the OR task is a robust test to identify early behavior alterations caused by glioblastoma in nude mice. In addition, these results suggest that OR task can be a reliable tool to test the efficacy of new therapies against these tumors.
Resumo:
The aims of this study were to investigate work conditions, to estimate the prevalence and to describe risk factors associated with Computer Vision Syndrome among two call centers' operators in Sao Paulo (n = 476). The methods include a quantitative cross-sectional observational study and an ergonomic work analysis, using work observation, interviews and questionnaires. The case definition was the presence of one or more specific ocular symptoms answered as always, often or sometimes. The multiple logistic regression model, were created using the stepwise forward likelihood method and remained the variables with levels below 5% (p < 0.05). The operators were mainly female and young (from 15 to 24 years old). The call center was opened 24 hours and the operators weekly hours were 36 hours with break time from 21 to 35 minutes per day. The symptoms reported were eye fatigue (73.9%), "weight" in the eyes (68.2%), "burning" eyes (54.6%), tearing (43.9%) and weakening of vision (43.5%). The prevalence of Computer Vision Syndrome was 54.6%. Associations verified were: being female (OR 2.6, 95% CI 1.6 to 4.1), lack of recognition at work (OR 1.4, 95% CI 1.1 to 1.8), organization of work in call center (OR 1.4, 95% CI 1.1 to 1.7) and high demand at work (OR 1.1, 95% CI 1.0 to 1.3). The organization and psychosocial factors at work should be included in prevention programs of visual syndrome among call centers' operators.
Resumo:
Texture image analysis is an important field of investigation that has attracted the attention from computer vision community in the last decades. In this paper, a novel approach for texture image analysis is proposed by using a combination of graph theory and partially self-avoiding deterministic walks. From the image, we build a regular graph where each vertex represents a pixel and it is connected to neighboring pixels (pixels whose spatial distance is less than a given radius). Transformations on the regular graph are applied to emphasize different image features. To characterize the transformed graphs, partially self-avoiding deterministic walks are performed to compose the feature vector. Experimental results on three databases indicate that the proposed method significantly improves correct classification rate compared to the state-of-the-art, e.g. from 89.37% (original tourist walk) to 94.32% on the Brodatz database, from 84.86% (Gabor filter) to 85.07% on the Vistex database and from 92.60% (original tourist walk) to 98.00% on the plant leaves database. In view of these results, it is expected that this method could provide good results in other applications such as texture synthesis and texture segmentation. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Recently there has been a considerable interest in dynamic textures due to the explosive growth of multimedia databases. In addition, dynamic texture appears in a wide range of videos, which makes it very important in applications concerning to model physical phenomena. Thus, dynamic textures have emerged as a new field of investigation that extends the static or spatial textures to the spatio-temporal domain. In this paper, we propose a novel approach for dynamic texture segmentation based on automata theory and k-means algorithm. In this approach, a feature vector is extracted for each pixel by applying deterministic partially self-avoiding walks on three orthogonal planes of the video. Then, these feature vectors are clustered by the well-known k-means algorithm. Although the k-means algorithm has shown interesting results, it only ensures its convergence to a local minimum, which affects the final result of segmentation. In order to overcome this drawback, we compare six methods of initialization of the k-means. The experimental results have demonstrated the effectiveness of our proposed approach compared to the state-of-the-art segmentation methods.
Resumo:
Dynamic texture is a recent field of investigation that has received growing attention from computer vision community in the last years. These patterns are moving texture in which the concept of selfsimilarity for static textures is extended to the spatiotemporal domain. In this paper, we propose a novel approach for dynamic texture representation, that can be used for both texture analysis and segmentation. In this method, deterministic partially self-avoiding walks are performed in three orthogonal planes of the video in order to combine appearance and motion features. We validate our method on three applications of dynamic texture that present interesting challenges: recognition, clustering and segmentation. Experimental results on these applications indicate that the proposed method improves the dynamic texture representation compared to the state of the art.
Resumo:
Rationale Cannabidiol, the main nonpsychotropic constituent of Cannabis sativa, possesses a large number of pharmacological effects including anticonvulsive, sedative, hypnotic, anxiolytic, antipsychotic, anti-inflammatory, and neuroprotective, as demonstrated in clinical and preclinical studies. Many neurodegenerative disorders involve cognitive deficits, and this has led to interest in whether cannabidiol could be useful in the treatment of memory impairment associated to these diseases. Objectives We used an animal model of cognitive impairment induced by iron overload in order to test the effects of cannabidiol in memory-impaired rats. Methods Rats received vehicle or iron at postnatal days 12-14. At the age of 2 months, they received an acute intraperitoneal injection of vehicle or cannabidiol (5.0 or 10.0 mg/kg) immediately after the training session of the novel object recognition task. In order to investigate the effects of chronic cannabidiol, iron-treated rats received daily intraperitoneal injections of cannabidiol for 14 days. Twenty-four hours after the last injection, they were submitted to object recognition training. Retention tests were performed 24 h after training. Results A single acute injection of cannabidiol at the highest dose was able to recover memory in iron-treated rats. Chronic cannabidiol improved recognition memory in iron-treated rats. Acute or chronic cannabidiol does not affect memory in control rats. Conclusions The present findings provide evidence suggesting the potential use of cannabidiol for the treatment of cognitive decline associated with neurodegenerative disorders. Further studies, including clinical trials, are warranted to determine the usefulness of cannabidiol in humans suffering from neurodegenerative disorders.
Resumo:
Inspection for corrosion of gas storage spheres at the welding seam lines must be done periodically. Until now this inspection is being done manually and has a high cost associated to it and a high risk of inspection personel injuries. The Brazilian Petroleum Company, Petrobras, is seeking cost reduction and personel safety by the use of autonomous robot technology. This paper presents the development of a robot capable of autonomously follow a welding line and transporting corrosion measurement sensors. The robot uses a pair of sensors each composed of a laser source and a video camera that allows the estimation of the center of the welding line. The mechanical robot uses four magnetic wheels to adhere to the sphere's surface and was constructed in a way that always three wheels are in contact with the sphere's metallic surface which guarantees enough magnetic atraction to hold the robot in the sphere's surface all the time. Additionally, an independently actuated table for attaching the corrosion inspection sensors was included for small position corrections. Tests were conducted at the laboratory and in a real sphere showing the validity of the proposed approach and implementation.
Resumo:
Ultrasonography has an inherent noise pattern, called speckle, which is known to hamper object recognition for both humans and computers. Speckle noise is produced by the mutual interference of a set of scattered wavefronts. Depending on the phase of the wavefronts, the interference may be constructive or destructive, which results in brighter or darker pixels, respectively. We propose a filter that minimizes noise fluctuation while simultaneously preserving local gray level information. It is based on steps to attenuate the destructive and constructive interference present in ultrasound images. This filter, called interference-based speckle filter followed by anisotropic diffusion (ISFAD), was developed to remove speckle texture from B-mode ultrasound images, while preserving the edges and the gray level of the region. The ISFAD performance was compared with 10 other filters. The evaluation was based on their application to images simulated by Field II (developed by Jensen et al.) and the proposed filter presented the greatest structural similarity, 0.95. Functional improvement of the segmentation task was also measured, comparing rates of true positive, false positive and accuracy. Using three different segmentation techniques, ISFAD also presented the best accuracy rate (greater than 90% for structures with well-defined borders). (E-mail: fernando.okara@gmail.com) (C) 2012 World Federation for Ultrasound in Medicine & Biology.
Resumo:
Bilayer segmentation of live video in uncontrolled environments is an essential task for home applications in which the original background of the scene must be replaced, as in videochats or traditional videoconference. The main challenge in such conditions is overcome all difficulties in problem-situations (e. g., illumination change, distract events such as element moving in the background and camera shake) that may occur while the video is being captured. This paper presents a survey of segmentation methods for background substitution applications, describes the main concepts and identifies events that may cause errors. Our analysis shows that although robust methods rely on specific devices (multiple cameras or sensors to generate depth maps) which aid the process. In order to achieve the same results using conventional devices (monocular video cameras), most current research relies on energy minimization frameworks, in which temporal and spacial information are probabilistically combined with those of color and contrast.