6 resultados para SELF-RENEWAL

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study of spermatogonial stem cells (SSCs) provides a model to better understand adult stem cell biology. Besides the biomedical potential to perform studies of infertility in many species, SSCs hold a promising application at animal transgenesis. Because stem cells are thought to be associated with basement membranes, expression of alpha-6 integrin has been investigated as a marker of type A spermatogonial cells, which are considered SSCs because of their undifferentiated status and self-renewal ability. In this manner, the aim of this study was to isolate type A SSCs from adult bulls by a two-step enzymatic procedure followed by a discontinuous Percoll density gradient purification and verify the expression of alpha-6 integrin by flow cytometry and real-time RT-PCR before and after Percoll purification. Spermatogonial cells were successfully obtained using the two-step enzymatic digestion. An average of 1 x 10(5) viable cells per gram of testis was isolated. However, the discontinuous Percoll did not purify isolated cells regarding alpha-6 integrin expression. Flow cytometry analysis demonstrated no differences in the alpha-6 integrin expression between cell samples before and after Percoll purification (p = 0.5636). The same was observed in the real-time PCR analysis (p > 0.05). In addition to alpha-6 integrin, the expression of GFR alpha-1 and PGP9.5, known bovine SSCs markers, was detected in all samples studied. Considering that Percoll can reduce cell viability, it is possible to conclude that Percoll density gradient is not suitable to purify bovine SSC, according to alpha-6 integrin expression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The recently emerged concept of cancer stem cell (CSC) has led to a new hypothesis on the basis for tumor progression. Basically, the CSC theory hypothesizes the presence of a hierarchically organized and relatively rare cell population, which is responsible for tumor initiation, self-renewal, and maintenance, in addition to accumulation of mutation and resistance to chemotherapy. CSCs have recently been described in breast cancer. Different genetic markers have been used to isolate breast CSCs, none of which have been correlated with the tumorigenicity or metastatic potential of the cells, limiting their precise characterization and clinical application in the development of therapeutic protocols. Here, we sought for subpopulations of CSCs by analyzing 10 judiciously chosen stem cell markers in a normal breast cell line (MCF10-A) and in four human breast cancer cell lines (MCF-7, MDA-MB-231, MDA-MB-435, and Hs578-T) displaying different degrees of metastatic and invasiveness potential. We were able to identify two markers, which are differentially expressed in nontumorigenic versus tumor cells. The CD90 marker was highly expressed in the malignant cell lines. Interestingly, the CD14 molecule displayed higher expression levels in the nontumorigenic cell line. Therefore, we demonstrated that these two markers, which are more commonly used to isolate and characterize stem cells, are differentially expressed in breast tumor cells, when compared with nontumorigenic breast cells. (C) 2012 International Society for Advancement of Cytometry

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mesenchymal stem cells (MSCs) are characterized as multipotent stromal cells with the capacity for both self-renewal and differentiation into mesodermal cell lineages. MSCs also have a fibroblast-like phenotype and can be isolated from several tissues. In recent years, researchers have found that MSCs secrete several soluble factors that exert immunosuppressive effects by modulating both innate (macrophages, dendritic and NK cells) and adaptive (B cells and CD4+ and CD8+ T cells) immune responses. This review summarizes the principal trophic factors that are related to immune regulation and secreted by MSCs under both autoimmune and inflammatory conditions. The understanding of mechanisms that regulate immunity in MSCs field is important for their future use as a novel cellular-based immunotherapy with clinical applications in several diseases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The skin is a complex stratified organ which acts not only as a permeability barrier and defense against external agents, but also has essential thermoregulatory, sensory and metabolic functions. Due to its high versatility and activity, the skin undergoes continuous self-renewal to repair damaged tissue and replace old cells. Consequently, the skin is a reservoir for adult stem cells of different embryonic origins. Skin stem cell populations reside in the adult hair follicle, sebaceous gland, dermis and epidermis. However, the origin of most of the stem cell populations found in the adult epidermis is still unknown. Far more unknown is the embryonic origin of other stem cells that populate the other layers of this tissue. In this review we attempt to clarify the emergence, structure, markers and embryonic development of diverse populations of stem cells from the epidermis, dermis and related appendages such as the sebaceous gland and hair follicle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Prion protein (PrP) can be considered a pivotal molecule because it interacts with several partners to perform a diverse range of critical biological functions that might differ in embryonic and adult cells. In recent years, there have been major advances in elucidating the putative role of PrP in the basic biology of stem cells in many different systems. Here, we review the evidence indicating that PrP is a key molecule involved in driving different aspects of the potency of embryonic and tissue-specific stem cells in self-perpetuation and differentiation in many cell types. It has been shown that PrP is involved in stem cell self-renewal, controlling pluripotency gene expression, proliferation and neural and cardiomyocyte differentiation. PrP also has essential roles in distinct processes that regulate tissue-specific stem cell biology in nervous and hematopoietic systems and during muscle regeneration. Results from our own investigations have shown that PrP is able to modulate self-renewal and proliferation in neural stem cells, processes that are enhanced by PrP interactions with stress inducible protein 1 (STI1). Thus, the available data reveal the influence of PrP in acting upon the maintenance of pluripotent status or the differentiation of stem cells from the early embryogenesis through adulthood.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Human endothelial cells (ECs) have the ability to make up the lining of blood vessels. These cells are also capable of neovascularization and revascularization and have been applied in various clinical situations. With the aim of understanding the effect of NANOG superexpression on ECs, we transduced the Nanog gene into the ECs. Nanog is highly expressed in embryonic stem cells (ESCs) and is essential for pluripotency and self-renewal. However, Nanog can also be expressed in somatic stem cells, and this gene is related to great expansion capacity in vitro. We found that ECs expressing Nanog showed expression of other stemness genes, such as Sox2, FoxD3, Oct4, Klf4, c-myc, and beta-catenin, that are not normally expressed or are expressed at very low levels in ECs. Nanog is one of the stemness genes that can activate other stemness genes, and the upregulation of the Nanog gene seems to be critical for reprogramming cells. In this study, the introduction of Nanog was sufficient to alter the expression of key genes of the pluripotent pathway. The functional importance of Nanog for altering the cell expression profile and morphology was clearly demonstrated by our results.