29 resultados para Rubber composites
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Single-phase polycrystalline mixed nickel-zinc ferrites belonging to Ni0.5Zn0.5Fe2O4 were prepared on a nanometric scale (mean crystallite size equal to 14.7 nm) by chemical synthesis named the modified poliol method. Ferrite nanopowder was then incorporated into a natural rubber matrix producing nanocomposites. The samples were investigated by means of infrared spectroscopy, X-ray diffraction, scanning electron microscopy and magnetic measurements. The obtained results suggest that the base concentration of nickel-zinc ferrite nanoparticles inside the polymer matrix volume greatly influences the magnetic properties of nanoconnposites. A small quantity of nanoparticles, less than 10 phr, in the nanocomposite is sufficient to produce a small alteration in the semi-crystallinity of nanocomposites observed by X-ray diffraction analysis and it produces a flexible magnetic composite material with a saturation magnetization, a coercivity field and an initial magnetic permeability equal to 3.08 emu/g, 99.22 Oe and 9.42 X 10(-5) respectively.
Resumo:
Objective: The purpose of this study was to evaluate the effect of mouth rinse solutions Lion color stability, surface roughness and microhardness of two composite resins. Material and Methods: Fifty test specimens of each composite (Filtek Z250 and Z350; 3M ESPE) were made using a teflon matrix (12x2 mm). Color, surface roughness and Knoop microhardness baseline measurements of each specimen were made and specimens (n=10) were immersed in 5 mouth rinse solutions: G1: distilled water (control), G2: Plax Classic, G3: Plax alcohol-free; G4: Periogard, and G5: Listerine. Final measurements of color, roughness and microhardness were performed and the results submitted to statistical analysis (2-way ANOVA, Bonferroni's test; p<0.05). Results: The most significant color change was observed for Z250 when immersed in Listerine (p<0.05). Z350 showed greater color change when immersed in Plax alcohol-free (p<0.05), but with no significant difference for Listerine (p>0.05). With regard to roughness, both composites showed significant changes when immersed in Listerine in comparison with Plax alcohol-free (p<0.05). Microhardness of Z350 was shown to be significantly changed when the composite was immersed in Plax alcohol-free (p<0.05). Conclusion: Composite changes depended on the material itself rather than the mouth rinse solution used.
Resumo:
Objectives. To verify the hypothesis that crack analysis and a mechanical test would rank a series of composites in a similar order with respect to polymerization stress. Also, both tests would show similar relationships between stress and composite elastic modulus and/or shrinkage. Methods. Soda-lime glass discs (2-mm thick) with a central perforation (3.5-mm diameter) received four Vickers indentations 500 mu m from the cavity margin. The indent cracks were measured (500x) prior and 10 min after the cavity was restored with one of six materials (Kalore/KL, Gradia/GR, Ice/IC, Wave/WV, Majesty Flow/MF, and Majesty Posterior/MP). Stresses at the indent site were calculated based on glass fracture toughness and increase in crack length. Stress at the bonded interface was calculated using the equation for an internally pressurized cylinder. The mechanical test used a universal testing machine and glass rods (5-mm diameter) as substrate. An extensometer monitored specimen height (2 mm). Nominal stress was calculated dividing the maximum shrinkage force by the specimen cross-sectional area. Composite elastic modulus was determined by nanoindentation and post-gel shrinkage was measured using strain gages. Data were subjected to one-way ANOVA/Tukey or Kruskal-Wallis/Mann-Whitney tests (alpha: 5%). Results. Both tests grouped the composites in three statistical subsets, with small differences in overlapping between the intermediate subset (MF, WV) and the highest (MP, IC) or the lowest stress materials (KL, GR). Higher stresses were developed by composites with high modulus and/or high shrinkage. Significance. Crack analysis demonstrated to be as effective as the mechanical test to rank composites regarding polymerization stress. (c) 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objectives. To purpose a method for predicting the shrinkage stress development in the adhesive layer of resin-composite cylinders that shrink bonded to a single flat surface, by measuring the deflection of a glass coverslip caused by the shrinkage of the bonded cylinders. The correlation between the volume of the bonded resin-composite and the stress-peak was also investigated. Methods. A glass coverslip deflection caused by the shrinkage of a bonded resin-composite cylinder (diameter: d = 8 mm, 4 mm, or 2 mm, height: h = 4 mm, 2 mm, 1 mm, or 0.5 mm) was measured, and the same set-up was simulated by finite element analysis (3D-FEA). Stresses generated in the adhesive layer were plotted versus two geometric variables of the resin-composite cylinder (C-Factor and volume) to verify the existence of correlations between them and stresses. Results. The FEA models were validated. A significant correlation (p < 0.01, Pearson's test) between the stress-peak and the coverslip deflection when the resin-composites were grouped by diameter was found for diameters of 2 and 4 mm. The stress-peak of the whole set of data showed a logarithmic correlation with the bonded resin-composite volume (p < 0.001, Pearson's test), but did not correlate with the C-Factor. Significance. The described method should be considered for standardizing the stress generated by the shrinkage of resin-composite blocks bonded to a single flat surface. (C) 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
The practice of running has consistently increased worldwide, and with it, related lower limb injuries. The type of running surface has been associated with running injury etiology, in addition other factors, such as the relationship between the amount and intensity of training. There is still controversy in the literature regarding the biomechanical effects of different types of running surfaces on foot-floor interaction. The aim of this study was to investigate the influence of running on asphalt, concrete, natural grass, and rubber on in-shoe pressure patterns in adult recreational runners. Forty-seven adult recreational runners ran twice for 40 m on all four different surfaces at 12 +/- 5% km . h(-1). Peak pressure, pressure-time integral, and contact time were recorded by Pedar X insoles. Asphalt and concrete were similar for all plantar variables and pressure zones. Running on grass produced peak pressures 9.3% to 16.6% lower (P < 0.001) than the other surfaces in the rearfoot and 4.7% to 12.3% (P < 0.05) lower in the forefoot. The contact time on rubber was greater than on concrete for the rearfoot and midfoot. The behaviour of rubber was similar to that obtained for the rigid surfaces - concrete and asphalt - possibly because of its time of usage (five years). Running on natural grass attenuates in-shoe plantar pressures in recreational runners. If a runner controls the amount and intensity of practice, running on grass may reduce the total stress on the musculoskeletal system compared with the total musculoskeletal stress when running on more rigid surfaces, such as asphalt and concrete.
Resumo:
Objectives. Verify the influence of different filler distributions on the subcritical crack growth (SCG) susceptibility, Weibull parameters (m and sigma(0)) and longevity estimated by the strength-probability-time (SPT) diagram of experimental resin composites. Methods. Four composites were prepared, each one containing 59 vol% of glass powder with different filler sizes (d(50) = 0.5; 0.9; 1.2 and 1.9 mu m) and distributions. Granulometric analyses of glass powders were done by a laser diffraction particle size analyzer (Sald-7001, Shimadzu, USA). SCG parameters (n and sigma(f0)) were determined by dynamic fatigue (10(-2) to 10(2) MPa/s) using a biaxial flexural device (12 x 1.2 mm; n = 10). Twenty extra specimens of each composite were tested at 10(0) MPa/s to determine m and sigma(0). Specimens were stored in water at 37 degrees C for 24 h. Fracture surfaces were analyzed under SEM. Results. In general, the composites with broader filler distribution (C0.5 and C1.9) presented better results in terms of SCG susceptibility and longevity. C0.5 and C1.9 presented higher n values (respectively, 31.2 +/- 6.2(a) and 34.7 +/- 7.4(a)). C1.2 (166.42 +/- 0.01(a)) showed the highest and C0.5 (158.40 +/- 0.02(d)) the lowest sigma(f0) value (in MPa). Weibull parameters did not vary significantly (m: 6.6 to 10.6 and sigma(0): 170.6 to 176.4 MPa). Predicted reductions in failure stress (P-f = 5%) for a lifetime of 10 years were approximately 45% for C0.5 and C1.9 and 65% for C0.9 and C1.2. Crack propagation occurred through the polymeric matrix around the fillers and all the fracture surfaces showed brittle fracture features. Significance. Composites with broader granulometric distribution showed higher resistance to SCG and, consequently, higher longevity in vitro. (C) 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Microwave devulcanization has been studied as a method for elastomer recycling, which is based on the conversion of the reticulated and infusible structure of thermosetting rubbers in free polymeric chains able to be remolded by thermomechanical processing in recycling operations for the manufacture of other products. Elastomeric wastes are often irregularly discarded in nature, producing serious environmental damage, and their mechanical recycling is still considered a challenge. Thus, the development of alternatives for elastomer recycling is directly related to the actions of sustainable development and economic benefits to companies that pay to discard their wastes. The aim of this work is to evaluate the chemical modifications occurring in styrene butadiene rubber (SBR) after microwave devulcanization. Compounds of SBR were vulcanized in the presence of vulcanization agents and variable amounts of carbon black, and then the rubbers were milled and submitted to microwave treatment. Only the SBR with high carbon black content shows some portion of devulcanized material. However, the rubber with lower content of carbon black which was devulcanized by microwave radiation shows an increase in cross-link density. The microwave treatment also causes cross-link breaks mainly in polysulfidic bonds as well as decomposition of chemical groups containing sulfur attached to the chemical structure of SBR, while. the chemical bonds of higher energy such as monosulfidic bonds remain preserved. The improvement of the microwave method for rubber devulcanization represents a way for viable recycling of thermosetting rubbers.
Resumo:
A tannin-phenolic resin (40 wt% of tannin, characterized by H-1 nuclear magnetic resonance (NMR) and C-13 NMR, Fourier transform infrared, thermogravimetry, differential scanning calorimetry) was used to prepare composites reinforced with sisal fibers (30-70 wt%). Inverse gas chromatography results showed that the sisal fibers and the tannin-phenolic thermoset have close values of the dispersive component and also have predominance of acid sites (acid character) at the surface, confirming the favoring of interaction between the sisal fibers and the tannin-phenolic matrix at the interface. The Izod impact strength increased up to 50 wt% of sisal fibers. This composite also showed high storage modulus, and the lower loss modulus, confirming its good fiber/matrix interface, also observed by SEM images. A composite with good properties was prepared from high content of raw material obtained from renewable sources (40 wt% of tannin substituted the phenol in the preparation of the matrix and 50 wt% of matrix was replaced by sisal fibers). (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Azobenzene molecules and their derivatives have been widely investigated for their potential applications in optical and electrooptical devices. We have prepared a new guest-host system from natural rubber (NR) impregnated with azobenzene derivative Sudan Red B (SRB). The effects of stretching and immersion time on photoinduced orientation were investigated by birefringence signal measurements. We have found that the molecular orientation increase when the samples are stretched and decrease with the increase of immersion time. The first behavior was explained by using the random coil model and the latter was attributed to increase of the aggregation of SRB into NR matrix. (C) 2012 Published by Elsevier B.V.
Resumo:
Thermoplastic starch (TPS) from industrial non-modified corn starch was obtained and reinforced with natural strands. The influence of the reinforcement on physical-chemical properties of the composites obtained by melt processing has been analyzed. For this purpose, composites reinforced with different amounts of either sisal or hemp strands have been prepared and evaluated in terms of crystallinity, water sorption, thermal and mechanical properties. The results showed that the incorporation of sisal or hemp strands caused an increase in the glass transition temperature (T-g) of the TPS as determined by DMTA. The reinforcement also increased the stiffness of the material, as reflected in both the storage modulus and the Young's modulus. Intrinsic mechanical properties of the reinforcing fibers showed a lower effect on the final mechanical properties of the materials than their homogeneity and distribution within the matrix. Additionally, the addition of a natural latex plasticizer to the composite decreased the water absorption kinetics without affecting significantly the thermal and mechanical properties of the material. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
This article presents the results of a combined experimental and theoretical study of fracture and resistance-curve behavior of hybrid natural fiber- and synthetic polymer fiber-reinforced composites that are being developed for potential applications in affordable housing. Fracture and resistance-curve behavior are studied using single-edge notched bend specimens. The sisal fibers used were examined using atomic force microscopy for fiber bundle structures. The underlying crack/microstructure interactions and fracture mechanisms are elucidated via in situ optical microscopy and ex-situ environmental scanning microscopy techniques. The observed crack bridging mechanisms are modeled using small and large scale bridging concepts. The implications of the results are then discussed for the design of eco-friendly building materials that are reinforced with natural and polypropylene fibers.
Resumo:
A multiwall carbon nanotube/silicone rubber (MWCNT/SR) composite electrode has been used for the determination of hydrochlorothiazide (HCTZ) in pharmaceutical formulations by differential pulse voltammetry (DPV). The electro-oxidation process was evaluated by cyclic voltammetry, from which it was observed that HCTZ presents an irreversible oxidation peak at 0.82 V vs. saturated calomel electrode (SCE) in the potential range from 0.5 to 1.1 V, in Britton-Robinson buffer pH 7.0 at MWCNT/SR. HCTZ was determined by DPV using a MWCNT/SR 70% (MWCNT, m/m) composite electrode after the optimization of the experimental parameters. The linear range was from 5.0 to 70.0 mu mol L-1, with a limit of detection (LOD) of 2.6 mu mol L-1. The HCTZ was determined in pharmaceutical formulations using the proposed composite electrode and the results agreed with those from the official high performance liquid chromatography (HPLC) method within 95% confidence level, according to the t-Student test.
Resumo:
The objective of this work was to evaluate the yield performance and macronutrient content of rubber extracted from four Hevea brasiliensis clones, under different tapping systems and plant phenological stages. The experiment was carried out in the 2010 and 2011 crop seasons, in a split-plot randomized complete block design, with four replicates. The main treatments - GT 1, PB 235, IAN 873, and RRIM 600 clones - were allocated in the plots, and the secondary treatments, which were the tapping systems 1/2S d/2, 1/2S d/4 ET 2.5%, and 1/2S d/7 ET 2.5%, were allocated in the subplots. The analyzed variables were natural rubber yield and macronutrient contents. Samples of natural rubber were obtained in the leaf development, mature leaf, and leaf senescence phenological stages. Rubber yield and its macronutrient contents are more influenced by tapping practice than by genetic material in the restrictive phenological stages of foliage.
Resumo:
PURPOSE: To compare the role of transitory latex and sylastic (R) implants in tympanoplasty on the closure of tympanic perforations. METHODS: A randomized double-blind prospective study was conducted on 107 patients with chronic otitis media submitted to underlay tympanoplasty and divided at random into three groups: control with no transitory implant, latex membrane group, and sylastic (R) membrane group. RESULTS: Greater graft vascularization occurred in the latex membrane group (p<0.05). Good biocompatibility was obtained with the use of the latex and silicone implants, with no effect on the occurrence of infection, otorrhea or otorragy. CONCLUSION: The use of a transitory latex implant induced greater graft vascularization, with a biocompatible interaction with the tissue of the human tympanic membrane.
Resumo:
In this work poly(hydroxybutyrate/poly(vinyl butyral)- co-(vinyl alcohol)-co(vinyl acetate) (or ethylene propylene diene monomer rubber) blends were prepared by conventional processing techniques (extrusion and injection moulding). A droplet type morphology was obtained for P(3HB)/PVB blends whereas P(3HB)/EPDM blends presented some extent of co-continuous morphology. In addition, rubbery domains were much smaller in the case of PVB. These differences in morphology are discussed taking into account solubility parameters and rheological behaviours of each component. For both blends, the increase of elastomer ratio led to a decrease of Young's modulus but an increase in elongation at break and impact strength. The latter increased more in the case of P(3HB)/EPDM blends although the rubbery domains were larger. These results are explained in the light of the glass transition of the rubber and the presence of plasticizer in the case of PVB. The addition of elastomer also resulted in an increase of P(3HB) biodegradation rate, especially in the case of EPDM. It is assumed that, in this case, the size and morphology of the rubbery domains induce a geometrical modification of the erosion front which leads to an increase of the interface between P(3HB) phase and the degradation medium and consequently to an apparently faster biodegradation kinetics of PHB/rubber blends. Copyright (C) 2011 Society of Chemical Industry