4 resultados para Rough Surface

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective Several implant surfaces are being developed, some in the nanoscale level. In this study, two different surfaces had their early healing properties compared in context of circumferential defects of various widths. Material and methods Six dogs had the mandibular premolars extracted. After 8weeks, four implants were placed equicrestally in each side. One acted as control, while the others were inserted into sites with circumferential defects of 1.0, 1.5 and 2.0mm wide and 5mm deep. A nano-modified surface was used on one side and a micro-rough on the other. Bone markers were administered on the third day after implant placement and then after 1, 2, 4weeks to investigate the bone formation dynamic through fluorescence analysis. Ground sections were prepared from 8-week healing biopsies and histomorphometry was performed. Results The fluorescence evaluation of the early healing showed numerically better results for the nano-modified group; however this trend was not followed by the histomorphometric evaluation. A non-significant numerical superiority of the micro-rough group was observed in terms of vertical bone apposition, defect bone fill, bone-to-implant contact and bone density. In the intra-group analysis, the wider defects showed the worse results while the control sites showed the best results for the different parameters, but without statistical relevance. Conclusion Both surfaces may lead to complete fill of circumferential defects, but the gap width has to be considered as a challenge. The nano-scale modification was beneficial in the early stages of bone healing, but the micro-rough surface showed numerical better outcomes at the 8-week final period.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electrospinning is used to produce fibers in the nanometer range by stretching a polymeric jet using electric fields of high magnitude. Chitosan is an abundant natural polymer that can be used to obtain biocompatible nanostructured membranes. The objectives of this work were to obtain nanostructured membranes based on blends of chitosan and polyoxyethylene (PEO), and evaluate their thermal and morphological properties, as well as their in vitro biocompatibility by agar diffusion cytotoxicity tests for three different cell lines. A nanostructured fibrous membrane with fiber diameters in the order of 200 nm was obtained, which presented a rough surface and thickness ranging from one to two millimeters. The results of the cytotoxicity tests evidenced that the chitosan/PEO membranes are non-toxic to the cells studied in this work. Further, the electrospinning technique was effective in obtaining nanostructured chitosan/PEO membranes, which showed biocompatibility according to in vitro preliminary tests using the cell lines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Herein, it was investigated for the first time the electro-oxidation of ethanol on Pt and PtRu electrodeposits in acidic media by using in situ surface enhanced infrared absorption spectroscopy with attenuated total reflection (ATR-SEIRAS). The experimental setup circumvents the weak absorbance signals related to adsorbed species, usually observed for rough, electrodeposited surfaces, and allows a full description of the CO coverage with the potential for both catalysts. The dynamics of adsorption-oxidation of CO was accessed by ATR-SEIRAS experiments (involving four ethanol concentrations) and correlated with expressions derived from a simple kinetic model. Kinetic analysis suggests that the growing of the CO adsorbed layer is nor influenced by the presence of Ru neither by the concentration of ethanol. The results suggest that the C-C scission is not related to the presence of Ru and probably happens at Pt sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Herein, it was investigated for the first time the electro-oxidation of ethanol on Pt and PtRu electrodeposits in acidic media by using in situ surface enhanced infrared absorption spectroscopy with attenuated total reflection (ATR-SEIRAS). The experimental setup circumvents the weak absorbance signals related to adsorbed species, usually observed for rough, electrodeposited surfaces, and allows a full description of the CO coverage with the potential for both catalysts. The dynamics of adsorption-oxidation of CO was accessed by ATR-SEIRAS experiments (involving four ethanol concentrations) and correlated with expressions derived from a simple kinetic model. Kinetic analysis suggests that the growing of the CO adsorbed layer is nor influenced by the presence of Ru neither by the concentration of ethanol. The results suggest that the C-C scission is not related to the presence of Ru and probably happens at Pt sites.