12 resultados para RAMAN SPECTROSCOPY
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
This work reports the analytical application of surface-enhanced Raman spectroscopy (SERS) in the trace analysis of organophosphorous pesticides (trichlorfon and glyphosate) and model organophosphorous compounds (dimethyl methylphosphonate and o-ethyl methylphosphonothioate) bearing different functional groups. SERS measurements were carried out using Ag nanocubes with an edge square dimension of ca. 100 nm as substrates. Density functional theory (DFT) with the B3LYP functional was used for the optimization of ground state geometries and simulation of Raman spectra of the organophosphorous compounds and their silver complexes. Adsorption geometries and marker bands were identified for each of the investigated compound. Results indicate the usefulness of SERS methodology for the sensitive analyses of organophosphorous compounds through the use of vibrational spectroscopy.
Resumo:
Objective: Raman spectroscopy has been employed to discriminate between malignant (basal cell carcinoma [BCC] and melanoma [MEL]) and normal (N) skin tissues in vitro, aimed at developing a method for cancer diagnosis. Background data: Raman spectroscopy is an analytical tool that could be used to diagnose skin cancer rapidly and noninvasively. Methods: Skin biopsy fragments of similar to 2 mm(2) from excisional surgeries were scanned through a Raman spectrometer (830 nm excitation wavelength, 50 to 200 mW of power, and 20 sec exposure time) coupled to a fiber optic Raman probe. Principal component analysis (PCA) and Euclidean distance were employed to develop a discrimination model to classify samples according to histopathology. In this model, we used a set of 145 spectra from N (30 spectra), BCC (96 spectra), and MEL (19 spectra) skin tissues. Results: We demonstrated that principal components (PCs) 1 to 4 accounted for 95.4% of all spectral variation. These PCs have been spectrally correlated to the biochemicals present in tissues, such as proteins, lipids, and melanin. The scores of PC2 and PC3 revealed statistically significant differences among N, BCC, and MEL (ANOVA, p < 0.05) and were used in the discrimination model. A total of 28 out of 30 spectra were correctly diagnosed as N, 93 out of 96 as BCC, and 13 out of 19 as MEL, with an overall accuracy of 92.4%. Conclusions: This discrimination model based on PCA and Euclidean distance could differentiate N from malignant (BCC and MEL) with high sensitivity and specificity.
Resumo:
Ionic liquids based on 1-alkyl-3-methylimidazolium cations and the hydrogen sulfate (or bisulfate) anion, HSO4-, are much more viscous than ionic liquids with alkyl sulfates, RSO4-. The structural origin of the high viscosity of HSO4- ionic liquids is unraveled from detailed comparison of the anion Raman bands in 1-ethyl-3-methylimidazolium hydrogen sulfate and 1-butyl-3-methylimidazolium hydrogen sulfate with available data for simple HSO(4)(-) salts in crystalline phase, molten phase, and aqueous solution. Two Raman bands at 1046 and 1010 cm(-1) have been assigned as symmetric stretching modes nu(s)(S = O) of HSO4-, the latter being characteristic of chains of hydrogen-bonded anions. The intensity of this component increases in the supercooled liquid phase. For comparison purposes, Raman spectra of 1-ethyl-3-methylimidazolium ethyl sulfate and 1-butyl-3-methylimidazolium methyl sulfate have been also obtained. There is no indication of difference in the strength of hydrogen bond interactions of imidazolium cations with HSO4- or RSO4- anions. Raman spectra at high pressures, up to 2.6 GPa, are also discussed. Raman spectroscopy provides evidence that hydrogen-bonded anions resulting in anion-anion interaction is the reason for the high viscosity of imidazolium ionic liquids with HSO4-. If the ionic liquid is exposed to moisture, these structures are disrupted upon absorption of water from the atmosphere.
Resumo:
An electronic and vibrational spectroscopic analysis of p-coumaric acid (HCou) and its deprotonated species was performed by UV-vis and Raman, respectively, and the results were supported by density functional theory (OFT) calculations. Electronic UV-vis spectral data of HCou solutions show that the deprotonation of the carboxyl group (Cou(-)) leads to a blue shift of the lowest energy electronic transition in comparison to the neutral species, whereas the subsequent deprotonation of the phenolic moiety (Cou(2-)) carries out to a more delocalized chromophore. The DFT geometric parameters calculations suggest that the variation in the electronic delocalization for the three organic species is due to different contribution of a quinoid structure that is significantly distorted in the case of Cou(2-). The Raman data of HCou and its sodium salts show that the main spectral features that allow to differentiate the three organic species are those involving the styrene nu(C=C)(sty) vibration at 1600cm(-1) region. Even though the Raman spectra of the sodium salts of Cou(-) and Cou(2-) anions show subtle differences, the appearing of a band at ca. 1598cm(-1) in the Na(2)Cou spectrum, assigned to a mode involving the carboxylate asymmetric stretching, nu(as)(COO), and the styrene stretching, nu(C=C)(sty), is quite characteristic, as confirmed by the theoretical Raman spectrum. Considering that p-coumaric acid is an archetypical phenolic compound with several biological activities that essentially depend upon the medium pH, Raman spectroscopy results reported in this work can provide a proper way to characterize such important phytochemical compound in different protonation states. In order to complement the characterization of the sodium salts, X-ray diffraction (XRD) and thermal analysis were performed. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The electronic interactions between the [Cu(opba)]2- anions (where opba is orthophenylenebis (oxamato)) and single-wall carbon nanotubes (SWCNTs) were investigated by resonance Raman spectroscopy. The opba can form molecular magnets, and the interactions of opba with SWCNTs can produce materials with very different magnetic/electronic properties. It is observed that the electronic interaction shows a dependence on the SWCNT diameter independent of whether they are metallic or semiconducting, although the interaction is stronger for metallic tubes. The interaction also is dependent on the amount of complex that is probably adsorbed on the carbon surface of the SWCNTs. Some charge transfer can be also occurring between the metallic complex and the SWCNTs. Copyright (c) 2012 John Wiley & Sons, Ltd.
Resumo:
Among the many methods developed for the synthesis of titanium dioxide, cathodic electrosynthesis has not received much attention because the resulting amorphous oxy-hydroxide matrix demands a further thermal annealing step to be transformed into crystalline titania. However, the possibility of filling deep recessed templates by the control of the solidliquid interface makes it a potentially suitable technique for the fabrication of porous scaffolds for photovoltaics and photocatalysis. Furthermore, a careful control of the crystallization process enables the growth of larger grains with lower density of grain boundaries, which act as electron traps that slow down electronic transport and promote charge recombination. In this report, well crystallized titania deposits were obtained by thermal annealing of amorphous deposits fabricated by cathodically assisted electrosynthesis on indium-tin oxide (ITO)substrates. The combined use of Raman spectroscopy and X-ray diffraction showed that the crystallization process is more intricate than previously assumed. It is shown that the amorphous matrix evolves into a rutile-free mixture of brookite and anatase at temperatures as low as 200 degrees C that persists up to 800 degrees C, when pure anatase dominates. The amount of brookite in the brookiteanatase mixture reaches a maximum at 400 degrees C. This very simple method for obtaining a brookiteanatase mixture and the ability to tune their proportions by thermal annealing is a promising alternative whose potential for solar cells and photocatalysis deserves a careful evaluation. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
This work investigates pure ionic liquids (ILs) derived from an imidazolium ring with different carbonic chains and halides or bis(trifluoromethanesulfonilimide) (TFSI-) as anions, using X-ray absorption near edge spectroscopy (XANES) at different energies (N, S, O, F, and Cl edges) to probe the interionic interactions. XANES data show that the interaction with the anion is weaker when the cation is an imidazolium than when the salt is formed by smaller cations, as lithium, independently of the length of the carbonic chain attached to the imidazolium cation. The results also show that, for all studied as, it is not observed any influence of the anion on the XANES spectra of the cation, nor the opposite. 1-Methylimidazolium with Cl-, a small and strongly coordinating anion, presents in the N K XANES spectrum a splitting of the band corresponding to nitrogen in the imidazolic ring, indicating two different chemical environments. For this cation with TFSI-, on the contrary, this splitting was not observed, showing that the anion has a weaker interaction with the imidazolic ring, even without a lateral carbonic chain.
Resumo:
USE OF THE LINEAR LIGHT SENSOR ILX554 IN OPTICAL SPECTROSCOPY. This technical note describes the construction of a low-cost optical detector. This device is composed by a high-sensitive linear light sensor (model ILX554) and a microcontroller. The performance or the detector was demonstrated by the detection of emission and Raman spectra of the several atomic systems and the results reproduce those found in the literature.
Resumo:
The ionic liquid butyltrimethylammonium bis(trifluoromethylsulfonyl)imide, [C4C1C1C1N][Tf2N], is a glass-forming liquid that exhibits partial crystallization depending on the cooling rate. Differential scanning calorimetry (DSC) indicates crystallization at T-c = 227 K, melting at T-m = 258 K, glass transition at T-g similar to 191 K, and also cold crystallization at T-cc similar to 219 K. Raman spectroscopy shows that the crystalline structure obtained by slow cooling is formed with [Tf2N](-) in cisoid conformation, whereas [Tf2N](-) in transoid conformation results from fast cooling. No preferred conformation of the butyl chain of the [C4C1C1C1N](+) cation is favored by slow or fast cooling of [C4C1C1C1N][Tf2N]. Low-frequency Raman spectroscopy shows that crystalline domains developing in the supercooled liquid result in a glacial state made of a mixture of crystallites and amorphous phase. However, these crystalline structures obtained by slow cooling or cold crystallization are not the same because anion-cation interactions promote local structures with distinct conformations of the [Tf2N](-) anion.
Resumo:
Layered double hydroxide (LDH) nanocontainers, suitable as carriers for anionic drugs, were intercalated with Pravastatin drug using magnesium-aluminum and zinc-aluminum in a M-II/Al molar ratio equal 2 and different Al3+/Pravastatin molar ratios. Postsynthesis treatments were used in order to increase the materials crystallinity. Hybrid materials were characterized by a set of physical chemical techniques: chemical elemental analysis, X-ray diffraction (XRD), mass coupled thermal analyses, vibrational infrared and Raman spectroscopies, and solid-state C-13 nuclear magnetic resonance (NMR). Results were interpreted in light of computational density functional theory (DFT) calculations performed for Sodium Pravastatin in order to assign the data obtained for the LDH intercalated materials. XRD peaks of LDH-Pravastatin material and the one-dimensional (1D) electron density map pointed out to a bilayer arrangement of Pravastatin in the interlayer region, where its associated carboxylate and vicinal hydroxyl groups are close to the positive LDH. The structural organization observed for the stacked assembly containing the unsymmetrical and bulky monoanion Pravastatin and LDH seems to be promoted by a self-assembling process, in which local interactions are maximized and chloride ion cointercalation is required. It is observed a high similarity among vibrational and C-13 NMR spectra of Na-Pravastatin and LDH-Pravastatin materials. Those features indicate that the intercalation preserves the drug structural integrity. Spectroscopic techniques corroborate the nature of the guest species and their arrangement between the inorganic layers. Changes related to carboxylate, alcohol, and olefinic moieties are observed in both vibrational Raman and C-13 NMR spectra after the drug intercalation. Thus, Pravastatin ions are forced to be arranged as head to tail through intermolecular hydrogen bonding between adjacent organic species. The thermal decomposition profile of the hybrid samples is distinct of that one observed for Na-Pravastatin salt, however, with no visible increase in the thermal behavior when the organic anion is sequestrated within LDH gap.
Resumo:
This paper describes a surface-enhanced Raman scattering (SERS) systematic investigation regarding the functionalization of gold (Au) and silver (Ag) nanoparticles with diphenyl dichalcogenides, i.e. diphenyl disulfide, diphenyl diselenide, and diphenyl ditelluride. Our results showed that, in all cases, functionalization took place with the cleavage of the chalcogenchalcogen bond on the surface of the metal. According to our density functional theory calculations, the molecules assumed a tilted orientation with respect to the metal surface for both Au and Ag, in which the angle of the phenyl ring relative to the metallic surface decreased as the mass of the chalcogen atom increased. The detected differences in the ordinary Raman and SERS spectra were assigned to the distinct stretching frequencies of the carbonchalcogen bond and its relative contribution to the ring vibrational modes. In addition, the SERS spectra showed that there was no significant interaction between the phenyl ring and the surface, in agreement with the tilted orientation observed from our density functional theory calculations. The results described herein indicate that diphenyl dichalcogenides can be successfully employed as starting materials for the functionalization of Au nanoparticles with organosulfur, organoselenium, and organotellurium compounds. On the other hand, diphenyl disulfide and diphenyl diselenide could be employed for the functionalization of Ag nanoparticles, while the partial oxidation of the organotellurium unit could be detected on the Ag surface. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
Glasses in the system xGeO(2)-(1-x)NaPO3 (0 <= x <= 0.50) were prepared by conventional melting quenching and characterized by thermal analysis, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and P-31 nuclear magnetic resonance (MAS NMR) techniques. The deconvolution of the latter spectra was aided by homonuclear J-resolved and refocused INADEQUATE techniques. The combined analyses of P-31 MAS NMR and O-1s XPS lineshapes, taking charge and mass balance considerations into account, yield the detailed quantitative speciations of the phosphorus, germanium, and oxygen atoms and their respective connectivities. An internally consistent description is possible without invoking the formation of higher-coordinated germanium species in these glasses, in agreement with experimental evidence in the literature. The structure can be regarded, to a first approximation, as a network consisting of P-(2) and P-(3) tetrahedra linked via four-coordinate germanium. As implied by the appearance of P-(3) units, there is a moderate extent of network modifier sharing between phosphate and germanate network formers, as expressed by the formal melt reaction P-(2) + Ge-(4) -> P-(3) + Ge-(3). The equilibrium constant of this reaction is estimated as K = 0.52 +/- 0.11, indicating a preferential attraction of network modifier by the phosphorus component. These conclusions are qualitatively supported by Raman spectroscopy as well as P-31{Na-23} and P-31{Na-23} rotational echo double resonance (REDOR) NMR results. The combined interpretation of O-1s XPS and P-31 MAS NMR spectra shows further that there are clear deviations from a random connectivity scenario: heteroatomic P-O-Ge linkages are favored over homoatomic P-O-P and Ge-O-Ge linkages.