27 resultados para RADIATION EFFECS

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work deals with MEH-PPV thin films to be used as gamma radiation sensors. The polymer thin films with two different thicknesses (30 and 100 nm) were irradiated at room temperature with different gamma radiation doses (up to 25 kGy). Optical properties of the material were investigated with FTIR and UV-Vis absorption spectroscopy. Results show that gamma radiation does not degrade substantially the thin-film material, suggesting that a crosslink effect may be occurring. The characteristic absorption peak of MEH-PPV, around 500 nm is shifted to shorter wavelengths with the increase of gamma radiation doses for both thicknesses samples. The 30-nm-thick samples showed a larger variation absorbance at a specific wavelength and a larger peak shift. These results indicate their potential for use in monitoring the radiation doses used on the sterilization of health care products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silver/alanine nanocomposites with varying mass percentage of silver have been produced. The size of the silver nanoparticles seems to drive the formation of the nanocomposite, yielding a homogeneous dispersion of the silver nanoparticles in the alanine matrix or flocs of silver nanoparticles segregated from the alanine crystals. The alanine crystalline orientation is modified according to the particle size of the silver nanoparticles. Concerning a mass percentage of silver below 0.1%, the nanocomposites are homogeneous, and there is no particle aggregation. As the mass percentage of silver is increased, the system becomes unstable, and there is particle flocculation with subsequent segregation of the alanine crystals. The nanocomposites have been analyzed by transmission electron microscopy (TEM), UV-Vis absorption spectroscopy, X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy and they have been tested as radiation detectors by means of electron spin resonance (ESR) spectroscopy in order to detect the paramagnetic centers created by the radiation. In fact, the sensitivity of the radiation detectors is optimized in the case of systems containing small particles (30 nm) that are well dispersed in the alanine matrix. As the agglomeration increases, particle growth (up to 1.5 mu m) and segregation diminish the sensitivity. In conclusion, nanostructured materials can be used for optimization of alanine sensitivity, by taking into account the influence of the particles size of the silver nanoparticles on the detection properties of the alanine radiation detectors, thus contributing to the construction of small-sized detectors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study introduces a new regression model developed to estimate the hourly values of diffuse solar radiation at the surface. The model is based on the clearness index and diffuse fraction relationship, and includes the effects of cloud (cloudiness and cloud type), traditional meteorological variables (air temperature, relative humidity and atmospheric pressure observed at the surface) and air pollution (concentration of particulate matter observed at the surface). The new model is capable of predicting hourly values of diffuse solar radiation better than the previously developed ones (R-2 = 0.93 and RMSE = 0.085). A simple version with a large applicability is proposed that takes into consideration cloud effects only (cloudiness and cloud height) and shows a R-2 = 0.92. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among extremophiles, microorganisms resistant to ultraviolet radiation (UVR) have been known to produce a variety of metabolites (i.e., extremolytes). We hypothesized that natural microbial flora on elevated land (hills) would reveal a variety of UVR-resistant extremophiles and polyextremophiles with modulated proteins and enzymes that had biotechnological implications. Microorganisms Cellulosimicrobium cellulans UVP1 and Bacillus pumilus UVP4 were isolated and identified using 16S rRNA sequencing, and showed extreme UV resistance (1.03 x 106 and 1.71 x 105 similar to J/m2, respectively) from elevated land soil samples along with unique patterns of protein expression under UVR and non-UVR. A broad range of cellulolytic activity on carboxymethyl cellulose agar plates in C. cellulans UVP1 and B. pumilus UVP4 was revealed at varying pH, temperature, and inorganic salt concentration. Further, the microbial strain B. pumilus UVP4 showed the basic characteristics of a novel group: polyextremophiles with significance in bioenergy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peanut skin, which is removed in the peanut blanching process, is rich in bioactive compounds with antioxidant properties. The aims of this study were to measure bioactive compounds in peanut skins and evaluate the effect of gamma radiation on their antioxidant activity. Peanut skin samples were treated with 0.0, 5.0, 7.5, or 10.0 kGy gamma rays. Total phenolics, condensed tannins, total flavonoids, and antioxidant activity were evaluated. Extracts obtained from the peanut skins were added to refined-bleached-deodorized (RBD) soybean oil. The oxidative stability of the oil samples was determined using the Oil Stability Index method and compared to a control and synthetic antioxidants (100 mg/kg BHT and 200 mg/kg TBHQ). Gamma radiation changed total phenolic content, total condensed tannins, total flavonoid content, and the antioxidant activity. All extracts, gamma irradiated or not, presented increasing induction period (h), measured by the Oil Stability Index method, when compared with the control. Antioxidant activity of the peanut skins was higher than BHT. The present study confirmed that gamma radiation did not affect the peanut skin extracts' antioxidative properties when added to soybean oil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light pollution due to exterior lighting is a rising concern. While glare, light trespass and general light pollution have been well described, there are few reported studies on the impact of light pollution on insects. By studying insect behavior in relation to artificial lighting, we suggest that control of the UV component of artificial lighting can significantly reduce its attractiveness, offering a strong ability to control the impact on insects. Traditionally, the attractiveness of a lamp to insects is calculated using the luminous efficiency spectrum of insect rhodopsin. This has enabled the development of lamps that emit radiation with wavelengths that are less visible to insects (that is, yellow lamps). We tested the assumption that the degree of visibility of a lamp to insects can predict its attractiveness by means of experimental collections. We found that the expected lamp's visibility is indeed related to the extent to which it attracts insects. However, the number of insects attracted to a lamp is disproportionally affected by the emission of ultraviolet radiation. UV triggers the behavior of approaching lights more or less independently of the amount of UV radiation emitted. Thus, even small amounts of UV should be controlled in order to develop bug-free lamps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron densities of 33 samples of normal (adipose and fibroglangular) and neoplastic (benign and malignant) human breast tissues were determined through Compton scattering data using a mono-chromatic synchrotron radiation source and an energy dispersive detector. The area of Compton peaks was used to determine the electron densities of the samples. Adipose tissue exhibits the lowest values of electron density whereas malignant tissue the highest. The relationship with their histology was discussed. Comparison with previous results showed differences smaller than 4%. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main goal of this work is to describe the diurnal and seasonal variations of the radiation balance components at the surface in the city of So Paulo based on observations carried out during 2004. Monthly average hourly values indicate that the amplitudes of the diurnal cycles of net radiation (Q*), downwelling and upwelling shortwave radiation (SW(DW), SW(UP)), and longwave radiations (LW(DW), LW(UP)) in February were, respectively, 37%, 14%, 19%, 11%, and 5% larger than they were in August. The monthly average daily values indicate a variation of 60% for Q*, with a minimum in June and a maximum in December; 45% for SW(DW), with a minimum in May and a maximum in September; 50% for SW(UP), with a minimum in June and a maximum in September; 13% for LW(DW), with a minimum in July and a maximum in January; and 9% for LW(UP), with a minimum in July and a maximum in February. It was verified that the atmospheric broadband transmissivity varied from 0.36 to 0.57; the effective albedo of the surface varied from 0.08 to 0.10; and the atmospheric effective emissivity varied from 0.79 to 0.92. The surface effective emissivity remained approximately constant and equal to 0.96. The albedo and surface effective emissivity for So Paulo agreed with those reported for urban areas in Europe and North America cities. This indicates that material and geometric effects on albedo and surface emissivity in So Paulo are similar to ones observed in typical middle latitudes cities. On the other hand, it was found that So Paulo city induces an urban heat island with daytime maximum intensity varying from 2.6A degrees C in July (16:00 LT) to 5.5A degrees C in September (15:00 LT). The analysis of the radiometric properties carried out here indicate that this daytime maximum is a primary response to the seasonal variation of daily values of net solar radiation at the surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical transition radiation (OTR) plays an important role in beam diagnostics for high energy particle accelerators. Its linear intensity with beam current is a great advantage as compared to fluorescent screens, which are subject to saturation. Moreover, the measurement of the angular distribution of the emitted radiation enables the determination of many beam parameters in a single observation point. However, few works deals with the application of OTR to monitor low energy beams. In this work we describe the design of an OTR based beam monitor used to measure the transverse beam charge distribution of the 1.9-MeV electron beam of the linac injector of the IFUSP microtron using a standard vision machine camera. The average beam current in pulsed operation mode is of the order of tens of nano-Amps. Low energy and low beam current make OTR observation difficult. To improve sensitivity, the beam incidence angle on the target was chosen to maximize the photon flux in the camera field-of-view. Measurements that assess OTR observation (linearity with beam current, polarization, and spectrum shape) are presented, as well as a typical 1.9-MeV electron beam charge distribution obtained from OTR. Some aspects of emittance measurement using this device are also discussed. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4748519]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Double-stranded pBS plasmid DNA was irradiated with gamma rays at doses ranging from 1 to 12 kGy and electron beams from 1 to 10 kGy. Fragment-size distributions were determined by direct visualization, using atomic force microscopy with nanometer-resolution operating in non-tapping mode, combined with an improved methodology. The fragment distributions from irradiation with gamma rays revealed discrete-like patterns at all doses, suggesting that these patterns are modulated by the base pair composition of the plasmid. Irradiation with electron beams, at very high dose rates, generated continuous distributions of highly shattered DNA fragments, similar to results at much lower dose rates found in the literature. Altogether, these results indicate that AFM could supplement traditional methods for high-resolution measurements of radiation damage to DNA, while providing new and relevant information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The fiber dissection technique provides unique 3-dimensional anatomic knowledge of the white matter. OBJECTIVE: To examine the optic radiation anatomy and its important relationship with the temporal stem and to discuss its findings in relation to the approaches to temporal lobe lesions. METHODS: We studied 40 cerebral hemispheres of 20 brains that had been fixed in formalin solution for 40 days. After removal of the arachnoid membrane, the hemispheres were frozen, and the Klingler technique was used for dissection under magnification. Stereoscopic 3-dimensional images of the dissection were obtained for illustration. RESULTS: The optic radiations are located deep within the superior and middle temporal gyri, always above the inferior temporal sulcus. The mean distance between the cortical surface and the lateral edge of the optic radiation was 21 mm. Its fibers are divided into 3 bundles after their origin. The mean distance between the anterior tip of the temporal horn and the Meyer loop was 4.5 mm, between the temporal pole and the anterior border of the Meyer loop was 28.4 mm, and between the limen insulae and the Meyer loop was 10.7 mm. The mean distance between the lateral geniculate body and the lateral margin of the central bundle of the optic radiation was 17.4 mm. CONCLUSION: The white matter fiber dissection reveals the tridimensional intrinsic architecture of the brain, and its knowledge regarding the temporal lobe is particularly important for the neurosurgeon, mostly because of the complexity of the optic radiation and related fibers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mach number and thermal effects on the mechanisms of sound generation and propagation are investigated in spatially evolving two-dimensional isothermal and non-isothermal mixing layers at Mach number ranging from 0.2 to 0.4 and Reynolds number of 400. A characteristic-based formulation is used to solve by direct numerical simulation the compressible Navier-Stokes equations using high-order schemes. The radiated sound is directly computed in a domain that includes both the near-field aerodynamic source region and the far-field sound propagation. In the isothermal mixing layer, Mach number effects may be identified in the acoustic field through an increase of the directivity associated with the non-compactness of the acoustic sources. Baroclinic instability effects may be recognized in the non-isothermal mixing layer, as the presence of counter-rotating vorticity layers, the resulting acoustic sources being found less efficient. An analysis based on the acoustic analogy shows that the directivity increase with the Mach number can be associated with the emergence of density fluctuations of weak amplitude but very efficient in terms of noise generation at shallow angle. This influence, combined with convection and refraction effects, is found to shape the acoustic wavefront pattern depending on the Mach number.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Persistent harmful scenarios associated with disposal of radioactive waste, high-background radiation areas and severe nuclear accidents are of great concern regarding consequences to both human health and the environment. Of particular concern is the extracellular DNA in aquatic environments contaminated by radiological substances. Strand breaks induced by radiation promote decrease in the transformation efficiency for extracellular DNA. The focus of this study is the quantification of DNA damage following long-term exposure (over one year) to low doses of natural uranium (an alpha particle emitter) to simulate natural conditions, since nothing is known about alpha radiation induced damage to extracellular DNA. A high-resolution Atomic Force Microscope was used to evaluate DNA fragments. Double-stranded plasmid pBS as a model for extracellular DNA was exposed to different amounts of natural uranium. It was demonstrated that low concentrations of U in water (50 to 150 ppm) produce appreciable numbers of double strand breaks, scaling with the square of the average doses. The importance of these findings for environment monitoring of radiological pollution is addressed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural distortions resulting from the size mismatch between the Eu2+ luminescent centre and the host Ba2+ cation as well as the electronic structure of BaAl2O4:Eu2+(,Dy3+) were studied using density functional theory (DFT) calculations and synchrotron radiation (SR) luminescence spectroscopy. The modified interionic distances as well as differences in the total energies indicate that Eu2+ prefers the smaller of the two possible Ba sites in the BaAl2O4 host. The calculated Eu2+ 4f(7) and 4f(6)5d(1) ground level energies confirm that the excited electrons can reach easily the conduction band for subsequent trapping. In addition to the green luminescence, a weak blue emission band was observed in BaAl2O4:Eu2+,Dy3+ probably due to the creation of a new Ba2+ site due to the effect of water exposure on the host. (C) 2012 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Banana is one of the most economically important fruit, explored almost exclusively by small producers as a continuous source of food and income. Although Brazil is one of the main banana producers, the national banana production is undergoing serious problems especially in the phases of production and post-harvest limiting its participation in the international market. One of the main factors leading to great production losses is the toppling over due to the tall height of plants of main commercial cultivars. A strategy to solve this problem is reducing height by inducing mutation. The objective of the present work was to characterize irradiated Prata type banana mutants (cvs. Pacovan and Preciosa) during two production cycles in order to select short plants in height with good agronomic characteristics. In vitro plants of both cultivars were irradiated with gamma rays in the doses of 20 Gy ('Pacovan', 200 plants) and 30 Gy ( 'Preciosa', 200 plants) subcultivated four times and afterwards evaluated in the field during two production cycles. Four possible mutants were selected from each cultivar with height smaller than the average height of the controls after two evaluation cycles. It was observed that some of these mutants presented greater precocity and bunch weight compared to the controls. From the results obtained it is possible to select mutant plants with superior agronomic characteristics for 'Pacovan' as well as 'Preciosa' submitted to gamma radiation.