7 resultados para Pt(111)

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The effect of trace quantities of ammonia on oxygen reduction reaction (ORR) on carbon-supported platinum catalysts in perchloric acid solutions is assessed using rotating ring disk electrode (RRDE) technique. The study demonstrates that ammonia has detrimental effects on ORR. The most significant effect takes place in the potential region above 0.7 V vs RHE. The effect is explained by the electrochemical oxidation of ammonia, which blocks Pt active sites and increases the formation of H2O2. This leads to losses in the disk currents and increments in the ring currents. The apparent losses in ORR currents may occur in two ways, namely, through the blocking of the active sites for ORR as well as by generating a small anodic current, which is believed to have a lower contribution. In addition, a detrimental effect of sodium cations in the potential range below 0.75 V vs RHE was demonstrated. This effect is most likely due to the co-adsorption of sodium cations and perchlorate anions on the Pt surface. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Reduction of nitrate on palladium-modified platinum single-crystal electrodes has been investigated both voltammetrically and spectroscopically in acidic media (pH = 1). Results obtained in H2O and D2O solvents are compared for the three crystallographic orientations. FTIR and differential electrochemical mass spectrometry (DEMS) results clearly indicate that the isotopic substitution of the solvent has a large effect in the mechanism of the reaction, changing the nature of the detected products. For Pt(111)/Pd and Pt(100)/Pd, N2O is detected as the main product of nitrate reduction when D2O is used as solvent, while no N2O is detected when the reaction is performed in H2O. For Pt(110)/Pd, N2O is detected in both solvents, although the use of D2O clearly favours the preferential formation of this product. The magnitude of voltammetric currents is also affected by the nature of the solvent. This has been analysed considering, in addition to the different product distribution, the existence of different transport numbers and optical constants of the solvent.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The adsorption of NO on transition-metal (TM) surfaces has been widely studied by experimental and theoretical techniques; however, our atomistic understanding of the interaction of nitrogen monoxide (NO) with small TM clusters is far from satisfactory, which compromises a deep understanding of real catalyst devices. In this study, we report a density functional theory study of the adsorption properties of NO on the TM13 (TM = Rh, Pd, Ir, Pt) clusters employing the projected augmented wave method. We found that the interaction of NO with TM13 is much more complex than that for NO/TM(111). In particular, for low symmetry TM13 clusters, there is a strong rearrangement of the electronic charge density upon NO adsorption and, as a consequence, the adsorption energy shows a very complex dependence even for adsorption sites with the same local effective coordination. We found a strong enhancement of the binding energy of NO to the TM13 clusters compared with the TM(111) surfaces, as the antibonding NO states are not occupied for NO/TM13, and the general relationship based on the d-band model between adsorption energy and the center of gravity of the occupied d-states does not hold for the studied TM13 clusters, in particular, for clusters with low symmetry. In contrast with the adsorption energy trends, the geometric NO/TM13 parameters and the vibrational N-O frequencies for different coordination sites follow the same trend as for the respective TM(111) surfaces, while the changes in the frequencies between different surfaces and TM13 clusters reflect the strong NO-TM13 interaction.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We investigated the electrochemical oxidation of glycerol on low-index Pt single crystals in acidic media (H2SO4 and HClO4) by cyclic voltammetry and Fourier Transform Infrared (FTIR) spectroscopy and we verified that this is a surface sensitive reaction. Pt(100) and Pt(110) surface structures favor the breaking of the C-C-C bond at low potentials (say 0.05 V), as seen by the formation of CO, one of the adsorbed residues of the glycerol dissociation, which poisons these surfaces even at high potentials. Pt(111) surface structure does not favor the C-C-C bond breaking at potentials as low as 0.05 V. However, Pt(111) is less poisoned by residues of glycerol dissociation and, for this reason, it is more active for glycerol oxidation than Pt(100) and Pt(110) at low potentials. Carbonyl containing compounds and CO2 were detected as reaction products of the glycerol oxidation on all investigated single-crystal Pt surfaces. The ratio between CO2 and carbonyl containing compounds is clearly much higher for Pt(100) and Pt(110) than for Pt(111). (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nowadays, there is a great interest in the economic success of direct ethanol fuel cells; however, our atomistic understanding of the designing of stable and low-cost catalysts for the steam reforming of ethanol is still far from satisfactory, in particular due to the large number of undesirable intermediates. In this study, we will report a first-principles investigation of the adsorption properties of ethanol and water at low coverage on close-packed transition-metal (TM) surfaces, namely, Fe(110), Co(0001), Ni(111), Cu(111), Ru(0001), Rh(111), Pd(111), Ag(111), Os(0001), Ir(111), Pt(111), and Au(111), employing density functional theory (DFT) calculations. We employed the generalized gradient approximation with the formulation proposed by Perdew, Burke, and Erzenholf (PBE) to the exchange correlation functional and the empirical correction proposed by S. Grimme (DFT+D3) for the van der Waals correction. We found that both adsorbates binds preferentially near or on the on top sites of the TM surfaces through the 0 atoms. The PBE adsorption energies of ethanol and water decreases almost linearly with the increased occupation of the 4d and 5d d-band, while there is a deviation for the 3d systems. The van der Waals correction affects the linear behavior and increases the adsorption energy for both adsorbates, which is expected as the van der Waals energy due to the correlation effects is strongly underestimated by DFT-PBE for weak interacting systems. The geometric parameters for water/TM are not affected by the van der Waals correction, i.e., both DFT and DFT+D3 yield an almost parallel orientation for water on the TM surfaces; however, DFT+D3 changes drastically the ethanol orientation. For example, DFT yields an almost perpendicular orientation of the C-C bond to the TM surface, while the C-C bond is almost parallel to the surface using DFT +D3 for all systems, except for ethanol/Fe(110). Thus, the van der Waals correction decreases the distance of the C atoms to the TM surfaces, which might contribute to break the C-C bond. The work function decreases upon the adsorption of ethanol and water, and both follow the same trends, however, with different magnitude (larger for ethanol/TM) due to the weak binding of water to the surface. The electron density increases mainly in the region between the topmost layer and the adsorbates, which explains the reduction of the substrate work function.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pt extended surfaces and nanoparticle electrodes are used to understand the origin of anomalous activities for electrocatalytic reactions in alkaline electrolytes as a function of cycling/time. Scanning tunneling microscopy (STM) of the surfaces before and after cycling in alkaline electrolytes was used to understand the morphology of the impurities and their impact on the catalytic sites. The nature of the contaminant species is identified as 3d-transition metal cations, and the formation of hydr(oxy)oxides of these elements is established as the main reason for the observed behavior. We find that, while for the oxygen reduction reaction (ORR) and the hydrogen oxidation reaction (HOR) the blocking of the sites by the undesired 3d-transition metal hydr(oxy)oxide species leads to deactivation of the reaction activities, the CO oxidation reaction and the hydrogen evolution reaction (HER) can have beneficial effects from the same impurities, the latter being dependent on the exact nature of the adsorbing species. These results show the significance of impurities present in real electrolytes and their impact on electrocatalysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

MgTiO3 (MTO) thin films were prepared by the polymeric precursor method with posterior spin-coating deposition. The films were deposited on Pt(111)/Ti/SiO2/Si(100) substrates and heat treated at 350 degrees C for 2 h and then heat treated at 400, 450, 500, 550, 600, 650 and 700 C for 2 h. The degree of structural order disorder, optical properties, and morphology of the MTO thin films were investigated by X-ray diffraction (XRD), micro-Raman spectroscopy (MR), ultraviolet-visible (UV-vis) absorption spectroscopy, photoluminescence (PL) measurements, and field-emission gun scanning electron microscopy (FEG-SEM) to investigate the morphology. XRD revealed that an increase in the annealing temperature resulted in a structural organization of MTO thin films. First-principles quantum mechanical calculations based on density functional theory (B3LYP level) were employed to study the electronic structure of ordered and disordered asymmetric models. The electronic properties were analyzed, and the relevance of the present theoretical and experimental results was discussed in the light of PL behavior. The presence of localized electronic levels and a charge gradient in the band gap due to a break in the symmetry are responsible for the PL in disordered MTO lattice.