37 resultados para Proinflammatory cytokines
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Glucocorticoids (GC) represent the main treatment for pemphigus; however, some patients show GC resistance. GC sensitivity was evaluated in 19 pemphigus patients and 41 controls by the number of binding sites [B-max (fmol/mg protein)] and the affinity of GC receptor [Kd (nM)] to dexamethasone (DEX) as well as by the pattern of cytokine by DEX-mediated inhibition of concanavalin-A (Con-A)-stimulated PBMC proliferation. The Kd (15.7 +/- 2.8 vs.8.1 +/- 1.3) and Bmax (6.5 +/- 0.9 vs. 3.9 +/- 0.3) were higher in pemphigus than controls (p = 0.002). Considering the values above the 95th percentile of normal group as a cut-off (K-d > 24.9 nM and B-max > 8.1 fmol/mg protein), elevated K-d and B-max were observed in 9.8% and 2.4% of controls and 15.8% and 36.8% of patients (p = 0.02). PBMC proliferation was stimulated by Con-A and inhibited by DEX (p < 0.001) in both pemphigus and control groups. IL-6 and TNF alpha (pg/mL) basal production were higher in patients than controls. There was an increment of these cytokines after Con-A stimulation, and they were inhibited by DEX (p = 0.002) in controls and remained elevated in pemphigus (p < 0.02). Patients and controls showed no difference in basal and stimulated production of IL-8 and IL-10. There is an alteration on GC sensitivity in pemphigus patients and a higher production of proinflammatory cytokines. Therefore, in pemphigus patients, proinflammatory cytokines might be involved in the mechanism of GC resistance and/or in its maintenance.
Resumo:
Background: Tuberculosis, caused by Mycobacterium tuberculosis or Mycobacterium bovis, remains one of the leading infectious diseases worldwide. The ability of mycobacteria to rapidly grow in host macrophages is a factor contributing to enhanced virulence of the bacteria and disease progression. Bactericidal functions of phagocytes are strictly dependent on activation status of these cells, regulated by the infecting agent and cytokines. Pathogenic mycobacteria can survive the hostile environment of the phagosome through interference with activation of bactericidal responses. To study the mechanisms employed by highly virulent mycobacteria to promote their intracellular survival, we investigated modulating effects of two pathogenic M. bovis isolates and a reference M. tuberculosis H37Rv strain, differing in their ability to multiply in macrophages, on activation phenotypes of the cells primed with major cytokines regulating proinflammatory macrophage activity. Results: Bone marrow- derived macrophages obtained from C57BL/6 mice were infected by mycobacteria after a period of cell incubation with or without treatment with IFN-gamma, inducing proinflammatory type-1 macrophages (M1), or IL-10, inducing anti-inflammatory type-2 cells (M2). Phenotypic profiling of M1 and M2 was then evaluated. The M. bovis strain MP287/03 was able to grow more efficiently in the untreated macrophages, compared with the strains B2 or H37Rv. This strain induced weaker secretion of proinflammatory cytokines, coinciding with higher expression of M2 cell markers, mannose receptor (MR) and arginase-1 (Arg-1). Treatment of macrophages with IFN-gamma and infection by the strains B2 and H37Rv synergistically induced M1 polarization, leading to high levels of inducible nitric oxide synthase (iNOS) expression, and reduced expression of the Arg-1. In contrast, the cells infected with the strain MP287/03 expressed high levels of Arg-1 which competed with iNOS for the common substrate arginine, leading to lower levels of NO production. Conclusions: The data obtained demonstrated that the strain, characterized by increased growth in macrophages, down- modulated classical macrophage activation, through induction of an atypical mixed M1/M2 phenotype.
Resumo:
Malaria associated-acute kidney injury (AKI) is associated with 45% of mortality in adult patients hospitalized with severe form of the disease. However, the causes that lead to a framework of malaria-associated AKI are still poorly characterized. Some clinical studies speculate that oxidative stress products, a characteristic of Plasmodium infection, as well as proinflammatory response induced by the parasite are involved in its pathophysiology. Therefore, we aimed to investigate the development of malaria-associated AKI during infection by P. berghei ANKA, with special attention to the role played by the inflammatory response and the involvement of oxidative stress. For that, we took advantage of an experimental model of severe malaria that showed significant changes in the renal pathophysiology to investigate the role of malaria infection in the renal microvascular permeability and tissue injury. Therefore, BALB/c mice were infected with P. berghei ANKA. To assess renal function, creatinine, blood urea nitrogen, and ratio of proteinuria and creatininuria were evaluated. The products of oxidative stress, as well as cytokine profile were quantified in plasma and renal tissue. The change of renal microvascular permeability, tissue hypoxia and cellular apoptosis were also evaluated. Parasite infection resulted in renal dysfunction. Furthermore, we observed increased expression of adhesion molecule, proinflammatory cytokines and products of oxidative stress, associated with a decrease mRNA expression of HO-1 in kidney tissue of infected mice. The measurement of lipoprotein oxidizability also showed a significant increase in plasma of infected animals. Together, our findings support the idea that products of oxidative stress, as well as the immune response against the parasite are crucial to changes in kidney architecture and microvascular endothelial permeability of BALB/c mice infected with P. berghei ANKA.
Resumo:
OBJECTIVE: Pleural tuberculosis is the most frequently occurring form of extra pulmonary disease in adults. In up to 40% of cases, the lung parenchyma is concomitantly involved, which can have an epidemiological impact. This study aims to evaluate the pleural and systemic inflammatory response of patients with pleural or pleuropulmonary tuberculosis. METHODS: A prospective study of 39 patients with confirmed pleural tuberculosis. After thoracentesis, a high resolution chest tomography was performed to evaluate the pulmonary involvement. Of the 39 patients, 20 exhibited only pleural effusion, and high resolution chest tomography revealed active associated-pulmonary disease in 19 patients. The total protein, lactic dehydrogenase, adenosine deaminase, vascular endothelial growth factor, interleukin-8, tumor necrosis factor-alpha, and transforming growth factor-beta(1) levels were quantified in the patient serum and pleural fluid. RESULTS: All of the effusions were exudates with high levels of adenosine deaminase. The levels of vascular endothelial growth factor and transforming growth factor-beta(1) were increased in the blood and pleural fluid of all of the patients with pleural tuberculosis, with no differences between the two forms of tuberculosis. The tumor necrosis factor-alpha levels were significantly higher in the pleural fluid of the patients with the pleuropulmonary form of tuberculosis. The interleukin-8 levels were high in the pleural fluid of all of the patients, without any differences between the forms of tuberculosis. CONCLUSION: Tumor necrosis factor-alpha was the single cytokine that significantly increased in the pleural fluid of the patients with pulmonary involvement. However, an overlap in the results does not permit us to suggest that cytokine is a biological marker of concomitant parenchymal involvement. Although high resolution chest tomography can be useful in identifying these patients, the investigation of fast acid bacilli and cultures for M. tuberculosis in the sputum is recommended for all patients who are diagnosed with pleural tuberculosis.
Resumo:
In this study we evaluated the onset and resolution of inflammation in control and streptozotocin-induced diabetic rats subjected to a single session of intense exercise. The following measurements were carried out prior to, immediately after, and 2 and 24 hours after exercise: plasma levels of proinflammatory cytokines (TNF-alpha, IL-1 beta, IL-6, CINC-2 alpha/beta, MIP-3 alpha, and IL-6), immunoglobulins (IgA and IgM), acute phase proteins (CRP and C3), and creatine kinase (CK) activity. We also examined the occurrence of macrophage death by measurements of macrophages necrosis (loss of membrane integrity) and DNA fragmentation. An increase was observed in the concentration of IL-1 beta (3.3-fold) and TNF-alpha (2.0-fold) and in the proportion of necrotic macrophages (4.5-fold) in diabetic rats 24 hours after exercise, while the control group showed basal measurements. Twenty-four hours after the exercise, serum CK activity was elevated in diabetic rats but not in control animals. We concluded that lesion and inflammations resulting from intense exercise were greater and lasted longer in diabetic animals than in nondiabetic control rats.
Resumo:
de Moura, NR, Cury-Boaventura, MF, Santos, VC, Levada-Pires, AC, Bortolon, JR, Fiamoncini, J, Pithon-Curi, TC, Curi, R, and Hatanaka, E. Inflammatory response and neutrophil functions in players after a futsal match. J Strength Cond Res 26(9): 2507-2514, 2012-Futsal players suffer injuries resulting from muscle fatigue and contact or collision among players. Muscle lesions can be detected by measuring muscle lesion markers such as creatine kinase (CK) and lactate dehydrogenase (LDH) in plasma. After an initial lesion, there is an increase in the plasma levels of C-reactive protein (CRP) and proinflammatory cytokines. These mediators may activate neutrophils and contribute to tissue damage and increase susceptibility to invasive microorganisms. In this study, we investigated the effect of a futsal match on muscle lesion markers, cytokines, and CRP in elite players. The basal and stimulated neutrophil responsiveness after a match was also evaluated based on measurements of neutrophil necrosis, apoptosis, phagocytic capacity, reactive oxygen species (ROS) production, and cytokines (tumor necrosis factor-alpha [TNF-alpha], interleukin [IL]-8, IL-1 beta, IL-10, and IL-1ra) production. Blood samples were taken from 16 players (26.4 +/- 3.2 years, 70.2 +/- 6.9 kg, 59.7 +/- 5.1 ml.kg(-1).min(-1), sports experience of 4.4 +/- 0.9 years) before and immediately after a match. Exercise increased the serum activities of CK (2.5-fold) and LDH (1.3-fold). Playing futsal also increased the serum concentrations of IL-6 (1.6-fold) and CRP (1.6-fold). The TNF-alpha, IL-1 beta, IL-8, IL-1ra, and IL-10 serum levels were not modified in the conditions studied. The futsal match induced neutrophil apoptosis, as indicated by phosphatidylserine externalization (6.0-fold). The exercise induced priming of neutrophils by increasing ROS (1.3-fold), TNF-alpha (5.8-fold), and IL-1 beta (4.8-fold) released in nonstimulated cells. However, in the stimulated condition, the exercise decreased neutrophil function, diminishing the release of ROS by phorbol myristate acetate-stimulated neutrophils (1.5-fold), and the phagocytic capacity (1.6-fold). We concluded that playing futsal induces inflammation, primes and activates neutrophils, and reduces the efficiency of neutrophil phagocytosis immediately after a match.
Resumo:
Crotalphine, a 14 amino acid peptide first isolated from the venom of the South American rattlesnake Crotalus durissus terrificus, induces a peripheral long-lasting and opioid receptor-mediated antinociceptive effect in a rat model of neuropathic pain induced by chronic constriction of the sciatic nerve. In the present study, we further characterized the molecular mechanisms involved in this effect, determining the type of opioid receptor responsible for this effect and the involvement of the nitric oxide-cyclic GMP pathway and of K+ channels. Crotalphine (0.2 or 5 mu g/kg, orally; 0.0006 mu g/paw), administered on day 14 after nerve constriction, inhibited mechanical hyperalgesia and low-threshold mechanical allodynia. The effect of the peptide was antagonized by intraplantar administration of naltrindole, an antagonist of delta-opioid receptors, and partially reversed by norbinaltorphimine, an antagonist of kappa-opioid receptors. The effect of crotalphine was also blocked by 7-nitroindazole, an inhibitor of the neuronal nitric oxide synthase; by 1H-(1,2,4) oxadiazolo[4,3-a]quinoxaline-1-one, an inhibitor of guanylate cyclase activation; and by glibenclamide, an ATP-sensitive K+ channel blocker. The results suggest that peripheral delta-opioid and kappa-opioid receptors, the nitric oxide-cyclic GMP pathway, and ATP-sensitive K+ channels are involved in the antinociceptive effect of crotalphine. The present data point to the therapeutic potential of this peptide for the treatment of chronic neuropathic pain. Behavioural Pharmacology 23:14-24 (C) 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins.
Resumo:
PURPOSE: To investigate the effects of pentoxifylline (PTX) in experimental acute pancreatitis (AP) starting drug administration after the induction of the disease. METHODS: One hundred male Wistar rats were submitted to taurocholate-induced AP and divided into three groups: Group Sham: sham-operated rats, Group Saline: AP plus saline solution, and Group PTX: AP plus PTX. Saline solution and PTX were administered 1 hour after induction of AP. At 3 hours after AP induction, peritoneal levels of tumor necrosis factor (TNF)-alpha, and serum levels of interleukin (IL)-6 and IL-10 levels were assayed by Enzyme-Linked Immunosorbent Assay (ELISA). Determinations of lung myeloperoxidase activity (MPO), histological analysis of lung and pancreas, and mortality study were performed. RESULTS: PTX administration 1 hour after induction of AP caused a significant decrease in peritoneal levels of TNF-alpha and in serum levels of IL-6 and IL-10 when compared to the saline group. There were no differences in lung MPO activity between the two groups with AP. A decrease in mortality was observed in the PTX treatment compared to the saline group. CONCLUSIONS: Administration of PTX after the onset of AP decreased the systemic levels of proinflammatory cytokines, raising the possibility that there is an early therapeutic window for PTX after the initiation of AP.
Resumo:
Background: The neural mobilization technique is a noninvasive method that has proved clinically effective in reducing pain sensitivity and consequently in improving quality of life after neuropathic pain. The present study examined the effects of neural mobilization (NM) on pain sensitivity induced by chronic constriction injury (CCI) in rats. The CCI was performed on adult male rats, submitted thereafter to 10 sessions of NM, each other day, starting 14 days after the CCI injury. Over the treatment period, animals were evaluated for nociception using behavioral tests, such as tests for allodynia and thermal and mechanical hyperalgesia. At the end of the sessions, the dorsal root ganglion (DRG) and spinal cord were analyzed using immunohistochemistry and Western blot assays for neural growth factor (NGF) and glial fibrillary acidic protein (GFAP). Results: The NM treatment induced an early reduction (from the second session) of the hyperalgesia and allodynia in CCI-injured rats, which persisted until the end of the treatment. On the other hand, only after the 4th session we observed a blockade of thermal sensitivity. Regarding cellular changes, we observed a decrease of GFAP and NGF expression after NM in the ipsilateral DRG (68% and 111%, respectively) and the decrease of only GFAP expression after NM in the lumbar spinal cord (L3-L6) (108%). Conclusions: These data provide evidence that NM treatment reverses pain symptoms in CCI-injured rats and suggest the involvement of glial cells and NGF in such an effect.
Resumo:
In response to pathogen recognition by Toll-like receptors (TLRs) on their cell surface, macrophages release lipid mediators and cytokines that are widely distributed throughout the body and play essential roles in host responses. Granulocyte macrophage colony-stimulating factor (GM-CSF) is important for the immune response during infections to improve the clearance of microorganisms. In this study, we examined the release of mediators in response to TLR2 ligands by bone marrow-derived macrophages (BMDMs) primed with GM-CSF. We demonstrated that when stimulated with TLR2 ligands, non-primed BMDMs preferentially produced PGE(2) in greater amounts than LTB4. However, GM-CSF priming shifted the release of lipid mediators by BMDMs, resulting in a significant decrease of PGE(2) production in response to the same stimuli. The decrease of PGE(2) production from primed BMDMs was accompanied by a decrease in PGE-synthase mRNA expression and an increase in TNF-alpha and nitric oxide (NO) production. Moreover, some GM-CSF effects were potentiated by the addition of IFN-gamma. Using a variety of TLR2 ligands, we established that PGE(2) release by GM-CSF-primed BMDMs was dependent on TLR2 co-receptors (TLR1, TLR6), CD14, MyD88 and the nuclear translocation of NF kappa B but was not dependent on peroxisome proliferator-activated receptor-gamma (PPAR-gamma) activation. Indeed, GM-CSF priming enhanced TLR2, TLR4 and MyD88 mRNA expression and phospho-I kappa B alpha formation. These findings demonstrate that GM-CSF drives BMDMs to present a profile relevant to the host during infections.
Resumo:
Immunological adjuvants that induce T cell-mediate immunity (TCMI) with the least side effects are needed for the development of human vaccines. Glycoinositolphospholipids (GIPL) and CpGs oligodeoxynucleotides (CpG ODNs) derived from the protozoa parasite Trypanosoma cruzi induce potent pro-inflammatory reaction through activation of Toll-Like Receptor (TLR) 4 and TLR9, respectively. Here, using mouse models, we tested the T. cruzi derived TLR agonists as immunological adjuvants in an antitumor vaccine. For comparison, we used well-established TLR agonists, such as the bacterial derived monophosphoryl lipid A (MPL), lipopeptide (Pam3Cys), and CpG ODN. All tested TLR agonists were comparable to induce antibody responses, whereas significant differences were noticed in their ability to elicit CD4(+) T and CD8(+) T cell responses. In particular, both GIPLs (GTH, and GY) and CpG ODNs (B344, B297 and B128) derived from T. cruzi elicited interferon-gamma (IFN-gamma) production by CD4(+) T cells. On the other hand, the parasite derived CpG ODNs, but not GIPLs, elicited a potent IFN-gamma response by CD8(+) T lymphocytes. The side effects were also evaluated by local pain (hypernociception). The intensity of hypernociception induced by vaccination was alleviated by administration of an analgesic drug without affecting protective immunity. Finally, the level of protective immunity against the NY-ESO-1 expressing melanoma was associated with the magnitude of both CD4+ T and CD8+ T cell responses elicited by a specific immunological adjuvant.
Resumo:
The 15-deoxy-(Delta 12,14)-PG J(2) (15d-PGJ(2)) has demonstrated excellent anti-inflammatory results in different experimental models. It can be used with a polymeric nanostructure system for modified drug release, which can change the therapeutic properties of the active principle, leading to increased stability and slower/prolonged release. The aim of the current study was to test a nano-technological formulation as a carrier for 15d-PGJ(2), and to investigate the immunomodulatory effects of this formulation in a mouse periodontitis model. Poly (D, L-lactide-coglycolide) nanocapsules (NC) were used to encapsulate 15d-PGJ(2). BALB/c mice were infected on days 0, 2, and 4 with Aggregatibacter actinomycetemcomitans and divided into groups (n = 5) that were treated daily during 15 d with 1, 3, or 10 mu g/kg 15d-PGJ(2)-NC. The animals were sacrificed, the submandibular lymph nodes were removed for FACS analysis, and the jaws were analyzed for bone resorption by morphometry. Immunoinflammatory markers in the gingival tissue were analyzed by reverse transcriptase-quantitative PCR, Western blotting, or ELISA. Infected animals treated with the 15d-PGJ(2)-NC presented lower bone resorption than infected animals without treatment (p < 0.05). Furthermore, infected animals treated with 10 mu g/kg 15d-PGJ(2)-NC had a reduction of CD4(+)CD25(+)FOXP3(+) cells and CD4/CD8 ratio in the submandibular lymph node (p < 0.05). Moreover, CD55 was upregulated, whereas RANKL was downregulated in the gingival tissue of the 10 mu g/kg treated group (p < 0.05). Several proinflammatory cytokines were decreased in the group treated with 10 mu g/kg 15d-PGJ(2)-NC, and high amounts of 15d-PGJ(2) were observed in the gingiva. In conclusion, the 15d-PGJ(2)-NC formulation presented immunomodulatory effects, decreasing bone resorption and inflammatory responses in a periodontitis mouse model. The Journal of Immunology, 2012, 189: 1043-1052.
Resumo:
Intracellular pattern recognition receptors such as the nucleotide-binding oligomerization domain (NOD)-like receptors family members are key for innate immune recognition of microbial infection and may play important roles in the development of inflammatory diseases, including rheumatic diseases. In this study, we evaluated the role of NOD1 and NOD2 on development of experimental arthritis. Ag-induced arthritis was generated in wild-type, NOD1(-/-)!, NOD2(-/-), or receptor-interacting serine-threonine kinase 2(-/-) (RIPK2(-/-)) immunized mice challenged intra-articularly with methylated BSA. Nociception was determined by electronic Von Frey test. Neutrophil recruitment and histopathological analysis of proteoglycan lost was evaluated in inflamed joints. Joint levels of inflammatory cytokine/chemokine were measured by ELISA. Cytokine (IL-6 and IL-23) and NOD2 expressions were determined in mice synovial tissue by RT-PCR. The NOD2(-/-) and RIPK2(-/-), but not NOD1(-/-), mice are protected from Ag-induced arthritis, which was characterized by a reduction in neutrophil recruitment, nociception, and cartilage degradation. NOD2/RIPK2 signaling impairment was associated with a reduction in proinflammatory cytokines and chemokines (TNF, IL-1 beta, and CXCL1/KC). IL-17 and IL-17 triggering cytokines (IL-6 and IL-23) were also reduced in the joint, but there is no difference in the percentage of CD4(+) IL-17(+) cells in the lymph node between arthritic wild-type and NOD2(-/-) mice. Altogether, these findings point to a pivotal role of the NOD2/RIPK2 signaling in the onset of experimental arthritis by triggering an IL-17-dependent joint immune response. Therefore, we could propose that NOD2 signaling is a target for the development of new therapies for the control of rheumatoid arthritis. The Journal of Immunology, 2012, 188: 5116-5122.
Resumo:
BACKGROUND/OBJECTIVES: Serum amyloid A (SAA) is an acute-phase protein that has been recently correlated with obesity and insulin resistance. Therefore, we first examined whether human recombinant SAA (rSAA) could affect the proliferation, differentiation and metabolism of 3T3-L1 preadipocytes. DESIGN: Preadipocytes were treated with rSAA and analyzed for changes in viability and [H-3-methyl]-thymidine incorporation as well as cell cycle perturbations using flow cytometry analysis. The mRNA expression profiles of adipogenic factors during the differentiation protocol were also analyzed using real-time PCR. After differentiation, 2-deoxy-[1,2-H-3]-glucose uptake and glycerol release were evaluated. RESULTS: rSAA treatment caused a 2.6-fold increase in cell proliferation, which was consistent with the results from flow cytometry showing that rSAA treatment augmented the percentage of cells in the S phase (60.9 +/- 0.54%) compared with the control cells (39.8 +/- 2.2%, ***P<0.001). The rSAA-induced cell proliferation was mediated by the ERK1/2 signaling pathway, which was assessed by pretreatment with the inhibitor PD98059. However, the exposure of 3T3-L1 cells to rSAA during the differentiation process resulted in attenuated adipogenesis and decreased expression of adipogenesis-related factors. During the first 72 h of differentiation, rSAA inhibited the differentiation process by altering the mRNA expression kinetics of adipogenic transcription factors and proteins, such as PPAR gamma 2 (peroxisome proliferator-activated receptor gamma 2), C/EBP beta (CCAAT/enhancer-binding protein beta) and GLUT4. rSAA prevented the intracellular accumulation of lipids and, in fully differentiated cells, increased lipolysis and prevented 2-deoxy-[1,2-H-3]-glucose uptake, which favors insulin resistance. Additionally, rSAA stimulated the secretion of proinflammatory cytokines interleukin 6 and tumor necrosis factor alpha, and upregulated SAA3 mRNA expression during adipogenesis. CONCLUSIONS: We showed that rSAA enhanced proliferation and inhibited differentiation in 3T3-L1 preadipocytes and altered insulin sensitivity in differentiated cells. These results highlight the complex role of SAA in the adipogenic process and support a direct link between obesity and its co-morbidities such as type II diabetes.
Resumo:
Marine sponges of the order Verongida are a rich source of biologically active bromotyrosine-derived secondary metabolites. However, none of these compounds are known to display anti-inflammatory activity. In the present investigation, we report the anti-inflammatory effects of 11-oxoaerothionin isolated from the Verongida sponge Aplysina fistularis. When RAW264.7 cells and primary macrophages were preincubated with 11-oxoaerothionin and stimulated with LPS (lipopolysaccharide), a concentration-dependent inhibition of iNOS (inducible nitric oxide synthase) protein and NO2- (Nitrite) production were observed. The same effect was observed when proinflammatory cytokines and PGE(2) (Prostaglandin E2) production was evaluated. In summary, we demonstrated that in the presence of LPS, 11-oxoaerothionin suppresses NO2 and iNOS expression as well as inflammatory cytokines and PGE(2).