21 resultados para Production engineering.

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although the biopolymer poly-(3-hydroxybutyrate), P[3HB], presents physicochemical properties that make it an alternative material to conventional plastics, its biotechnological production is quite expensive. As carbon substrates contribute greatly to P[3HB] production cost, the utilization of a cheaper carbon substrate and less demanding micro-organisms should decrease its cost. In the present study a 23 factorial experimental design was applied, aiming to evaluate the effects of using hydrolysed corn starch (HCS) and soybean oil (SBO) as carbon substrates, and cheese whey (CW) supplementation in the mineral medium (MM) on the responses, cell dried weigh (DCW), percentage P[3HB] and mass P[3HB] by recombinant Escherichia coli strains JM101 and DH10B, containing the P[3HB] synthase genes from Cupriavidus necator (ex-Ralstonia eutropha). The analysis of effects indicated that the substrates and the supplement and their interactions had positive effect on CDW. Statistically generated equations showed that, at the highest concentrations of HCS, SO and CW, theoretically it should be possible to produce about 2 g L(1) DCW, accumulating 50% P[3HB], in both strains. To complement this study, the strain that presented the best results was cultivated in MM added to HCS, SBO and CW ( in best composition observed) and complex medium (CM) to compare the obtained P[3HB] in terms of physicochemical parameters. The obtained results showed that the P[3HB] production in MM (1.29 g L(-1)) was approximately 20% lower than in CM (1.63 g L(-1)); however, this difference can be compensated by the lower cost of the MM achieved by the use of cheap renewable carbon sources. Moreover, using differential scanning calorimetry and thermogravimetry analyses, it was observed that the polymer produced in MM was the one which presented physicochemical properties (Tg and Tf) that were more similar to those found in the literature for P[3HB].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rise of new multinationals in countries like Brazil provides an opportunity to revisit and carefully construct theories of how firms internationalize, a topic on which extant theory is weak. Brazilian firms are "infant multinationals", unlike developed country firms that are "mature multinationals". They are also internationalizing in a very different global context, and can do so on the basis of different competitive advantages than multinationals that came before. Therefore, this study aims at creating subsidies for theory building about early-stage internationalization. Emerging country firms have Production competences as main competitive asset to internationalize, what reflects their competitive positioning in home markets and their entry strategy in international markets. In the case of early-entrants - Western multinationals in the 1950s and Japanese in the 1980s - the Production competence played a key role for successful internationalization. Thus, the focus of the study is the role that the Production competence plays in the internationalization of late-entrants, the emerging country multinationals. The research design considers not only the position of the headquarters but also the initiatives of the subsidiaries and the dynamic interplay between both. The paper allows a better understanding of internationalization processes and the role of Production, when firms start building their own international networks. It brings relevant insights about the paths that are being followed by emerging country multinationals, the difficulties they find, the solutions they develop. These are important inputs not only for new theory building but also for managerial practice. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Significant amounts of wastes are generated by the coffee industry, among of which, coffee silverskin (CS) and spent coffee grounds (SCG) are the most abundantly generated during the beans roasting and instant coffee preparation, respectively. This study evaluated the sugars metabolism and production of ethanol by three different yeast strains (Saccharomyces cerevisiae, Pichia stipitis and Kluyveromyces fragilis) when cultivated in sugar rich hydrolysates produced by acid hydrolysis of CS and SCG. S. cerevisiae provided the best ethanol production from SCG hydrolysate (11.7 g/l, 50.2% efficiency). On the other hand, insignificant (<= 1.0 g/l) ethanol production was obtained from CS hydrolysate, for all the evaluated yeast strains, probably due to the low sugars concentration present in this medium (approx. 22 g/l). It was concluded that it is possible to reuse SCG as raw material for ethanol production, which is of great interest for the production of this biofuel, as well as to add value to this agro-industrial waste. CS hydrolysate, in the way that is produced, was not a suitable fermentation medium for ethanol production; however, the hydrolysate concentration for the sugars content increase previous the use as fermentation medium could be an alternative to overcome this problem. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

According to recent research carried out in the foundry sector, one of the most important concerns of the industries is to improve their production planning. A foundry production plan involves two dependent stages: (1) determining the alloys to be merged and (2) determining the lots that will be produced. The purpose of this study is to draw up plans of minimum production cost for the lot-sizing problem for small foundries. As suggested in the literature, the proposed heuristic addresses the problem stages in a hierarchical way. Firstly, the alloys are determined and, subsequently, the items that are produced from them. In this study, a knapsack problem as a tool to determine the items to be produced from furnace loading was proposed. Moreover, we proposed a genetic algorithm to explore some possible sets of alloys and to determine the production planning for a small foundry. Our method attempts to overcome the difficulties in finding good production planning presented by the method proposed in the literature. The computational experiments show that the proposed methods presented better results than the literature. Furthermore, the proposed methods do not need commercial software, which is favorable for small foundries. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this paper is to study the feasibility of using cellulose fibers obtained from an agricultural waste, hemp core (Cannabis Sativa L), through different new environmental friendly cooking processes for fiber-cement production. The physical and mechanical properties of the fiber reinforced concrete, which depend on the nature and morphology of the fibers, matrix properties and the interactions between them, must be kept between the limits required for its application. Therefore, the morphology of the fibers and how its use affects the flocculation, retention and drainage processes in the fiber-cement manufacture, and the mechanical and physical properties of the fiber-cement product have been studied. The use of pulp obtained by means of the hemp core cooking in ethanolamine at 60% concentration at 180 degrees C during 90 min resulted in the highest solids retention and the best mechanical properties among the studied hemp core pulps. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work was focused on the steam explosion pretreatment reproduction and alkaline delignification reactions on a pilot scale for the ethanol production, through different varieties of natural sugarcane bagasse, pretreated bagasse and delignified pretreated bagasse (cellulosic pulp). The possible chemical composition differences of the various types of bagasse, as well as the chemical composition variations of the materials in the 20 processes of pretreatment and delignification on the pilot scale were verified. The analytical results of the 20 samples of most diverse varieties and origins of natural sugarcane bagasse considering planting soils, planting periods and weather; show no significant chemical differences. It is evident that only with the chemical composition it is not possible to verify the differences between the varieties of sugarcane bagasses. The research results may offer some evidences of these varieties, but it is not a reliable parameter. The pilot process of steam explosion pretreatment and the alkaline delignification process of pretreated material showed through analytical results a good capacity of reproduction, as the standard differences were below 2.7. The average allowed in the pretreatment and alkaline delignification processes were 66.1 +/- 0.8 and 51.5 +/- 2.6 respectively, ensuring an excellent reproduction capacity of the processes obtained through chemical characterizations. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of microalgae and cyanobacteria for the production of biofuels and other raw materials is considered a very promising sustainable technology due to the high areal productivity, potential for CO2 fixation and use of non-arable land. The production of oil by microalgae in a large scale plant was studied using emergy analysis. The joint transformity calculated for the base scenario was 1.32E + 5 sej/J, the oil transformity was 3.51E + 5 sej/J, the emergy yield ratio (EYR) was 1.09 and environmental loading ratio was 11.10 and the emergy sustainability index (ESI) was 0.10, highlighting some of the key challenges for the technology such as high energy consumption during harvesting, raw material consumption and high capital and operation costs. Alternatives scenarios and the sensitivity to process improvements were also assessed, helping prioritize further research based on sustainability impact. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sugarcane (Saccharum spp.) and palm tree (Elaeis guianeensis) are crops with high biofuel yields, 7.6 m(3) ha (1) y(-)1 of ethanol and 4 Mg ha(-1) y(-1) of oil, respectively. The joint production of these crops enhances the sustainability of ethanol. The objective of this work was comparing a traditional sugarcane ethanol production system (TSES) with a joint production system (JSEB), in which ethanol and biodiesel are produced at the same biorefinery but only ethanol is traded. The comparison is based on ISO 14.040:2006 and ISO 14044:2006, and appropriate indicators. Production systems in Cerrado (typical savannah), Cerradao (woody savannah) and pastureland ecosystems were considered. Energy and carbon balances, and land use change impacts were evaluated. The joint system includes 100% substitution of biodiesel for diesel, which is all consumed in different cropping stages. Data were collected by direct field observation methods, and questionnaires applied to Brazilian facilities. Three sugarcane mills situated in Sao Paulo State and one palm oil refinery located in Para State were surveyed. The information was supplemented by secondary sources. Results demonstrated that fossil fuel use and greenhouse gas emissions decreased, whereas energy efficiency increased when JSEB was compared to TSES. In comparison with TSES, the energy balance of JSEB was 1.7 greater. In addition, JSEB released 23% fewer GHG emissions than TSES. The ecosystem carbon payback time for Cerrado, Cerradao, and Degraded Grassland of JSEB was respectively 4, 7.7 and -7.6 years. These are typical land use types of the Brazilian Cerrado region for which JSEB was conceived. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report STAR measurements of the longitudinal double-spin asymmetry A(LL), the transverse singlespin asymmetry A(N), and the transverse double-spin asymmetries A(Sigma) and A(TT) for inclusive jet production at mid-rapidity in polarized p + p collisions at a center-of-mass energy of root s = 200 GeV. The data represent integrated luminosities of 7.6 pb(-1) with longitudinal polarization and 1.8 pb(-1) with transverse polarization, with 50%-55% beam polarization, and were recorded in 2005 and 2006. No evidence is found for the existence of statistically significant jet A(N), A(Sigma), or A(TT) at mid-rapidity. Recent model calculations indicate the A(N) results may provide new limits on the gluon Sivers distribution in the proton. The asymmetry A(LL) significantly improves the knowledge of gluon polarization in the nucleon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the manufacture of explosives, large amounts of water are used to remove unwanted by-products generated. This water in turn, ends up in wastewater treatment plants or water bodies. The aim of this study was to evaluate the toxic potential of effluent generated by 2.4.6-Trinitrotoluene (TNT) production, yellow water, red water and mixture of yellow and red water, produced from a plant located in the Paraiba Valley, Sao Paolo state, Brazil. Daphnia similis, Danio rerio, Escherichia coli, Pseudomonas putida and Pseudokircheneriella subcaptata were used as test organisms. Physicochemical parameters such as color, pH, conductivity, total dissolved solids, dissolved oxygen, chemical oxygen demand (COD) and biochemical oxygen demand (BOD) were evaluated. Effluent from 2.4.6-TNT production was extremely toxic to all test organisms. The physicochemical parameters evaluated showed high levels of conductivity (from 41.533 to 42.344 mu S /cm) and chemical oxygen demand (COD of 8471 to 27.364 mg/L) for the effluents analyzed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work aimed at evaluating the spray congealing method for the production of microparticles of carbamazepine combined with a polyoxylglyceride carrier. In addition, the influence of the spray congealing conditions on the improvement of drug solubility was investigated using a three-factor, three-level Box-Behnken design. The factors studied were the cooling air flow rate, atomizing pressure, and molten dispersion feed rate. Dependent variables were the yield, solubility, encapsulation efficiency, particle size, water activity, and flow properties. Statistical analysis showed that only the yield was affected by the factors studied. The characteristics of the microparticles were evaluated using X-ray powder diffraction, scanning electron microscopy, differential scanning calorimetry, and hot-stage microscopy. The results showed a spherical morphology and changes in the crystalline state of the drug. The microparticles were obtained with good yields and encapsulation efficiencies, which ranged from 50 to 80% and 99.5 to 112%, respectively. The average size of the microparticles ranged from 17.7 to 39.4 mu m, the water activities were always below 0.5, and flowability was good to moderate. Both the solubility and dissolution rate of carbamazepine from the spray congealed microparticles were remarkably improved. The carbamazepine solubility showed a threefold increase and dissolution profile showed a twofold increase after 60 min compared to the raw drug. The Box-Behnken fractional factorial design proved to be a powerful tool to identify the best conditions for the manufacture of solid dispersion microparticles by spray congealing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on a new, promising nanotechnological approach for hydrometallurgy based on recyclable, chemically functionalized superparamagnetic nanoparticles. In this process, the metal ions (e.g. Cu2+) are captured by the nanoparticles and confined at the electrode surface by means of an external magnet. Due to the pre-concentration effect the electrodeposition process is greatly improved, yielding the pure metal in a much shorter time in comparison with the conventional electrodeposition process. After the electrolysis, the magnetic nanoparticles are ready to return to the process. The proposed strategy can advantageously be incorporated in hydrometallurgy, reducing the number of steps associated with complexation, organic solvent extraction, metal release and diffusional electroprocessing, leading to a more sustainable technology. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Companies are currently choosing to integrate logics and systems to achieve better solutions. These combinations also include companies striving to join the logic of material requirement planning (MRP) system with the systems of lean production. The purpose of this article was to design an MRP as part of the implementation of an enterprise resource planning (ERP) in a company that produces agricultural implements, which has used the lean production system since 1998. This proposal is based on the innovation theory, theory networks, lean production systems, ERP systems and the hybrid production systems, which use both components and MRP systems, as concepts of lean production systems. The analytical approach of innovation networks enables verification of the links and relationships among the companies and departments of the same corporation. The analysis begins with the MRP implementation project carried out in a Brazilian metallurgical company and follows through the operationalisation of the MRP project, until its production stabilisation. The main point is that the MRP system should help the company's operations with regard to its effective agility to respond in time to demand fluctuations, facilitating the creation process and controlling the branch offices in other countries that use components produced in the matrix, hence ensuring more accurate estimates of stockpiles. Consequently, it presents the enterprise knowledge development organisational modelling methodology in order to represent further models (goals, actors and resources, business rules, business process and concepts) that should be included in this MRP implementation process for the new configuration of the production system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Agroindustrial residues are materials often rich in cellulose and hemicellulose. The use of these substrates for the microbial production of enzymes of industrial interest is mainly due to their high availability associated with their low cost. In this work, corncob (CCs) particles decomposed to soluble compounds (liquor) were incorporated in the microbial growth medium through autohydrolysis, as a strategy to increase and undervalue xylanase and beta-xylosidase production by Aspergillus terricola and Aspergillus ochraceus. The CCs autohydrolysis liquor produced at 200 A degrees C for 5, 15, 30 or 50 min was used as the sole carbon source or associated with untreated CC. The best condition for enzyme synthesis was observed with CCs submitted to 30 min of autohydrolysis. The enzymatic production with untreated CCs plus CC liquor was higher than with birchwood xylan for both microorganisms. A. terricola produced 750 total U of xylanase (144 h cultivation) and 30 total U of beta-xylosidase (96-168 h) with 0.75% untreated CCs and 6% CCs liquor, against 650 total U of xylanase and 2 total U of beta-xylosidase in xylan; A. ochraceus produced 605 total U of xylanase and 56 total U of beta-xylosidase (168 h cultivation) with 1% untreated CCs and 10% CCs liquor against 400 total U of xylanase and 38 total U of beta-xylosidase in xylan. These results indicate that the treatment of agroindustrial wastes through autohydrolysis can be a viable strategy in the production of high levels of xylanolytic enzymes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Implant topography is an important factor that influences many cell types. To understand the role of topography in the inflammatory events, we evaluated the response of human gingival fibroblasts (HGFs) by the release pattern of cytokines. HGFs were cultured on Ti discs for 24 and 48 h. Four different surface treatments were used: machining method (turned), blasting followed by an acid-etching method (BAE), oxidative nanopatterning (ON) method, and an association of blasting followed by an acid-etching plus oxidative nanopatterning (BAE+ON) method. Extracellular levels of IL-6, IL-8, transforming growth factor beta (TGF-beta), IL-4, and IL-10 were measured by enzyme-linked immunosorbant assay. Increased levels of IL-6 and IL-8 were observed in all surfaces after 24 h which decreased after 48 h. BAE, ON, and BAE+ON surfaces showed a reduction in IL-6 levels compared with the turned after 48 h (p < 0.05). On one hand, IL-8 production was lower in BAE+ON in comparison to the turned surface (p < 0.05). On the other hand, IL-4 showed increased levels with 48 h, which were significantly different between turned, BAE, and ON surfaces, but not with BAE+ON. Additionally, TGF-beta and IL-10 production were not detected. This study indicates that nanotopography might be important in the modulation of the inflammatory response in cultured HGFs. (c) 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A 100A:2629-2636, 2012.