4 resultados para Prediction techniques

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aquafeed production faces global issues related to availability of feed ingredients. Feed manufacturers require greater flexibility in order to develop nutritional and cost-effective formulations that take into account nutrient content and availability of ingredients. The search for appropriate ingredients requires detailed screening of their potential nutritional value and variability at the industrial level. In vitro digestion of feedstuffs by enzymes extracted from the target species has been correlated with apparent protein digestibility (APD) in fish and shrimp species. The present study verified the relationship between APD and in vitro degree of protein hydrolysis (DH) with Litopenaeus vannamei hepatopancreas enzymes in several different ingredients (n = 26): blood meals, casein, corn gluten meal, crab meal, distiller`s dried grains with solubles, feather meal, fish meals, gelatin, krill meals, poultry by-product meal, soybean meals, squid meals and wheat gluten. The relationship between APD and DH was further verified in diets formulated with these ingredients at 30% inclusion into a reference diet. APD was determined in vivo (30.1 +/- 0.5 degrees C, 32.2 +/- 0.4%.) with juvenile L vannamei (9 to 12 g) after placement of test ingredients into a reference diet (35 g kg(-1) CP: 8.03 g kg(-1) lipid; 2.01 kcal g(-1)) with chromic oxide as the inert marker. In vitro DH was assessed in ingredients and diets with standardized hepatopancreas enzymes extracted from pond-reared shrimp. The DH of ingredients was determined under different assay conditions to check for the most suitable in vitro protocol for APD prediction: different batches of enzyme extracts (HPf5 or HPf6), temperatures (25 or 30 degrees C) and enzyme activity (azocasein): crude protein ratios (4 U: 80 mg CP or 4 U: 40 mg CP). DH was not affected by ingredient proximate composition. APD was significantly correlated to DH in regressions considering either ingredients or diets. The relationships between APD and DH of the ingredients could be suitably adjusted to a Rational Function (y = (a + bx)/(1 + cx + dx2), n = 26. Best in vitro APD predictions were obtained at 25 degrees C, 4 U: 80 mg CP both for ingredients (R(2) = 0.86: P = 0.001) and test diets (R(2) = 0.96; P = 0.007). The regression model including all 26 ingredients generated higher prediction residuals (i.e., predicted APD - determined APD) for corn gluten meal, feather meal. poultry by-product meal and krill flour. The remaining test ingredients presented mean prediction residuals of 3.5 points. A model including only ingredients with APD>80% showed higher prediction precision (R(2) = 0.98: P = 0.000004; n = 20) with average residual of 1.8 points. Predictive models including only ingredients from the same origin (e.g., marine-based, R(2) = 0.98; P = 0.033) also displayed low residuals. Since in vitro techniques have been usually validated through regressions against in vivo APD, the DH predictive capacity may depend on the consistency of the in vivo methodology. Regressions between APD and DH suggested a close relationship between peptide bond breakage by hepatopancreas digestive proteases and the apparent nitrogen assimilation in shrimp, and this may be a useful tool to provide rapid nutritional information. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The sera of a retrospective cohort (n = 41) composed of children with well characterized cow's milk allergy collected from multiple visits were analyzed using a protein microarray system measuring four classes of immunoglobulins. The frequency of the visits, age and gender distribution reflected real situation faced by the clinicians at a pediatric reference center for food allergy in 530 Paulo, Brazil. The profiling array results have shown that total IgG and IgA share similar specificity whilst IgM and in particular IgE are distantly related. The correlation of specificity of IgE and IgA is variable amongst the patients and this relationship cannot be used to predict atopy or the onset of tolerance to milk. The array profiling technique has corroborated the clinical selection criteria for this cohort albeit it clearly suggested that 4 out of the 41 patients might have allergies other than milk origin. There was also a good correlation between the array data and ImmunoCAP results, casein in particular. By using qualitative and quantitative multivariate analysis routines it was possible to produce validated statistical models to predict with reasonable accuracy the onset of tolerance to milk proteins. If expanded to larger study groups, the array profiling in combination with the multivariate techniques show potential to improve the prognostic of milk allergic patients. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: To integrate data from two-dimensional echocardiography (2D ECHO), three-dimensional echocardiography (3D ECHO), and tissue Doppler imaging (TDI) for prediction of left ventricular (LV) reverse remodeling (LVRR) after cardiac resynchronization therapy (CRT). It was also compared the evaluation of cardiac dyssynchrony by TDI and 3D ECHO. Methods: Twenty-four consecutive patients with heart failure, sinus rhythm, QRS = 120 msec, functional class III or IV and LV ejection fraction (LVEF) = 0.35 underwent CRT. 2D ECHO, 3D ECHO with systolic dyssynchrony index (SDI) analysis, and TDI were performed before, 3 and 6 months after CRT. Cardiac dyssynchrony analyses by TDI and SDI were compared with the Pearson's correlation test. Before CRT, a univariate analysis of baseline characteristics was performed for the construction of a logistic regression model to identify the best predictors of LVRR. Results: After 3 months of CRT, there was a moderate correlation between TDI and SDI (r = 0.52). At other time points, there was no strong correlation. Nine of twenty-four (38%) patients presented with LVRR 6 months after CRT. After logistic regression analysis, SDI (SDI > 11%) was the only independent factor in the prediction of LVRR 6 months of CRT (sensitivity = 0.89 and specificity = 0.73). After construction of receiver operator characteristic (ROC) curves, an equation was established to predict LVRR: LVRR =-0.4LVDD (mm) + 0.5LVEF (%) + 1.1SDI (%), with responders presenting values >0 (sensitivity = 0.67 and specificity = 0.87). Conclusions: In this study, there was no strong correlation between TDI and SDI. An equation is proposed for the prediction of LVRR after CRT. Although larger trials are needed to validate these findings, this equation may be useful to candidates for CRT. (Echocardiography 2012;29:678-687)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current scientific applications have been producing large amounts of data. The processing, handling and analysis of such data require large-scale computing infrastructures such as clusters and grids. In this area, studies aim at improving the performance of data-intensive applications by optimizing data accesses. In order to achieve this goal, distributed storage systems have been considering techniques of data replication, migration, distribution, and access parallelism. However, the main drawback of those studies is that they do not take into account application behavior to perform data access optimization. This limitation motivated this paper which applies strategies to support the online prediction of application behavior in order to optimize data access operations on distributed systems, without requiring any information on past executions. In order to accomplish such a goal, this approach organizes application behaviors as time series and, then, analyzes and classifies those series according to their properties. By knowing properties, the approach selects modeling techniques to represent series and perform predictions, which are, later on, used to optimize data access operations. This new approach was implemented and evaluated using the OptorSim simulator, sponsored by the LHC-CERN project and widely employed by the scientific community. Experiments confirm this new approach reduces application execution time in about 50 percent, specially when handling large amounts of data.