4 resultados para Power gathering, Nuclear Strengthening, Alliance, Juche Ideology, Offensive Realism.
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
In October 2008, the Brazilian Government announced plans to invest US$212 billion in the construction of nuclear power plants, totaling a joint capacity of 60,000 MW. Apart from this program, officials had already announced the completion of the construction of the nuclear plant Angra III; the construction of large-scale hydroelectric plans in the Amazon and the implantation of natural gas, biomass and coal thermoelectric plants in other regions throughout the country. Each of these projects has its proponents and its opponents, who bring forth concerns and create heated debates in the specialized forums. In this article, some of these concerns are explained, especially under the perspective of the comparative analysis of costs involved. Under such merit figures, the nuclear option, when compared to hydro plants, combined with conventional thermal and biomass-fueled plants, and even wind, to expand Brazilian power-generation capacity, does not appear as a priority. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence has been used in many applications of magnetic resonance imaging (MRI) and low-resolution NMR (LRNMR) spectroscopy. Recently. CPMG was used in online LRNMR measurements that use long RF pulse trains, causing an increase in probe temperature and, therefore, tuning and matching maladjustments. To minimize this problem, the use of a low-power CPMG sequence based on low refocusing pulse flip angles (LRFA) was studied experimentally and theoretically. This approach has been used in several MRI protocols to reduce incident RF power and meet the specific absorption rate. The results for CPMG with LRFA of 3 pi/4 (CPMG(135)), pi/2 (CPMG(90)) and pi/4 (CPMG(45)) were compared with conventional CPMG with refocusing pi pulses. For a homogeneous field, with linewidth equal to Delta nu = 15 Hz, the refocusing flip angles can be as low as pi/4 to obtain the transverse relaxation time (T(2)) value with errors below 5%. For a less homogeneous magnetic field. Delta nu = 100 Hz, the choice of the LRFA has to take into account the reduction in the intensity of the CPMG signal and the increase in the time constant of the CPMG decay that also becomes dependent on longitudinal relaxation time (T(1)). We have compared the T(2) values measured by conventional CPMG and CPMG(90) for 30 oilseed species, and a good correlation coefficient, r = 0.98, was obtained. Therefore, for oilseeds, the T(2) measurements performed with pi/2 refocusing pulses (CPMG(90)), with the same pulse width of conventional CPMG, use only 25% of the RF power. This reduces the heating problem in the probe and reduces the power deposition in the samples. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In the present work, we report experimental results of He stopping power into Al2O3 films by using both transmission and Rutherford backscattering techniques. We have performed measurements along a wide energy range, from 60 to 3000 key, covering the maximum stopping range. The results of this work are compared with previously published dap-, showing a good agreement for the high-energy range, but evidencing discrepancies in the low-energy region. The existing theories follow the same tendency: good theoretical-experimental agreement for higher energies, but they failed to reproduce previous and present results in the low energy regime. On the other hand it is interesting to note that the semi-empirical SRIM code reproduces quite well the present data. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Hadron therapy is a promising technique to treat deep-seated tumors. For an accurate treatment planning, the energy deposition in the soft and hard human tissue must be well known. Water has been usually employed as a phantom of soft tissues, but other biomaterials, such as hydroxyapatite (HAp), used as bone substitute, are also relevant as a phantom for hard tissues. The stopping power of HAp for H+ and He+ beams has been studied experimentally and theoretically. The measurements have been done using the Rutherford backscattering technique in an energy range of 450-2000 keV for H+ and of 400-5000 keV for He+ projectiles. The theoretical calculations are based in the dielectric formulation together with the MELF-GOS (Mermin Energy-Loss Function – Generalized Oscillator Strengths) method [1] to describe the target excitation spectrum. A quite good agreement between the experimental data and the theoretical results has been found. The depth dose profile of H+ and He+ ion beams in HAp has been simulated by the SEICS (Simulation of Energetic Ions and Clusters through Solids) code [2], which incorporates the electronic stopping force due to the energy loss by collisions with the target electrons, including fluctuations due to the energy-loss straggling, the multiple elastic scattering with the target nuclei, with their corresponding nuclear energy loss, and the dynamical charge-exchange processes in the projectile charge state. The energy deposition by H+ and He+ as a function of the depth are compared, at several projectile energies, for HAp and liquid water, showing important differences.