4 resultados para Power family
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
This paper examines the local power of the likelihood ratio, Wald, score and gradient tests under the presence of a scalar parameter, phi say, that is orthogonal to the remaining parameters. We show that some of the coefficients that define the local powers remain unchanged regardless of whether phi is known or needs to be estimated, where as the others can be written as the sum of two terms, the first of which being the corresponding term obtained as if phi were known, and the second, an additional term yielded by the fact that phi is unknown. The contribution of each set of parameters on the local powers of the tests can then be examined. Various implications of our main result are stated and discussed. Several examples are presented for illustrative purposes
Resumo:
The asymptotic expansion of the distribution of the gradient test statistic is derived for a composite hypothesis under a sequence of Pitman alternative hypotheses converging to the null hypothesis at rate n(-1/2), n being the sample size. Comparisons of the local powers of the gradient, likelihood ratio, Wald and score tests reveal no uniform superiority property. The power performance of all four criteria in one-parameter exponential family is examined.
Resumo:
This paper considers likelihood-based inference for the family of power distributions. Widely applicable results are presented which can be used to conduct inference for all three parameters of the general location-scale extension of the family. More specific results are given for the special case of the power normal model. The analysis of a large data set, formed from density measurements for a certain type of pollen, illustrates the application of the family and the results for likelihood-based inference. Throughout, comparisons are made with analogous results for the direct parametrisation of the skew-normal distribution.
Resumo:
We derive asymptotic expansions for the nonnull distribution functions of the likelihood ratio, Wald, score and gradient test statistics in the class of dispersion models, under a sequence of Pitman alternatives. The asymptotic distributions of these statistics are obtained for testing a subset of regression parameters and for testing the precision parameter. Based on these nonnull asymptotic expansions, the power of all four tests, which are equivalent to first order, are compared. Furthermore, in order to compare the finite-sample performance of these tests in this class of models, Monte Carlo simulations are presented. An empirical application to a real data set is considered for illustrative purposes. (C) 2012 Elsevier B.V. All rights reserved.