13 resultados para Potassium decavanadate decahydrate
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The effects of silicon (Si) supplied in the form of potassium silicate (PS) were evaluated on epidemic components of powdery mildew of melon under greenhouse conditions. The PS was applied to the roots or to leaves. In the first experiment, epidemic components were evaluated after inoculation with Podosphaera xanthii. In the second experiment, the disease progress rate was evaluated on plants subjected to natural infection. The area under the disease progress curve was reduced by 65% and 73% in the foliar and root treatments, respectively, compared to control plants, as a consequence of reductions in infection efficiency, colony expansion rate, colony area, conidial production and disease progress rate. However, root application of PS was more effective than foliar application in reducing most of the epidemic components, except for infection efficiency. This can be explained by the high Si concentration in leaf tissues with root application, in contrast to the foliar treatment where Si was only deposited on the external leaf surfaces. The effects of PS reported in this study demonstrated that powdery mildew of melon can be controlled, and that the best results can be achieved when PS is supplied to the roots.
Resumo:
Potassium fluorrichterite (KNaCaMg5Si8O22F2) glass-ceramics were modified by either increasing the concentration of calcium (GC5) or by the addition of P2O5 (GP2). Rods (2 x 4 mm) of stoichiometric fluorrichterite (GST), modified compositions (GC5 and GP2) and 45S5 bioglass, which was used as the reference material, were prepared using a conventional lost-wax technique. Osteoconductivity was investigated by implantation into healing defects in the midshaft of rabbit femora. Specimens were harvested at 4 and 12 weeks following implantation and tissue response was investigated using computed microtomography (mu CT) and histological analyses. The results showed greatest bone to implant contact in the 45S5 bioglass reference material at 4 and 12 weeks following implantation, however, GST, GC5 and GP2 all showed direct bone tissue contact with evidence of new bone formation and cell proliferation along the implant surface into the medullary space. There was no evidence of bone necrosis or fibrous tissue encapsulation around the test specimens. Of the modified potassium fluorrichterite compositions, GP2 showed the greatest promise as a bone substitute material due to its osteoconductive potential and superior mechanical properties.
Resumo:
The Ipanema alkaline-carbonatitic complex is part of the Meso-Cenozoic alkaline magmatism located within the southeastern part of the Brazilian Platform. Drill-core and field sampling have indicated the occurrence of glimmerites, with subordinate shonkinites (mela-syenites), clinopyroxene-bearing glimmerites, diorites and syenites. The glimmerites are cross-cut by lamprophyric dykes and calciocarbonatites. Fenitization has deeply affected the country rocks, originating dioritic and syenitic rocks. The Ipanema rocks show a distinct potassic affinity. The initial Sr-Nd- isotopic composition of the Ipanema rocks ((87)Sr/(86)Sr = 0.70661-0.70754 and (143)Nd/(144)Nd = 0.51169-0.51181) is similar to that of tholeiitic and potassium-rich-alkaline rocks of the Eastern Paraguay. Stable isotope data for the Ipanema calciocarbonatite suggest interaction with fluids at temperatures typical of hydrothermal stages, as hypothesized for other carbonatite complexes from southeastern Brazil. The chemical differences between the lamprophyre, glimmerites, carbonatites, apatitites and magnetitites, and the absence of marked REE enrichment in the evolved lithologies, all indicate that fractional crystallization and accumulus of liquidus phases in a magma reservoir, likely coupled with liquid immiscibility processes, may have played an important role in the genesis of the Ipanema rocks.
Resumo:
Leao RM, Li S, Doiron B, Tzounopoulos T. Diverse levels of an inwardly rectifying potassium conductance generate heterogeneous neuronal behavior in a population of dorsal cochlear nucleus pyramidal neurons. J Neurophysiol 107: 3008-3019, 2012. First published February 29, 2012; doi:10.1152/jn.00660.2011.-Homeostatic mechanisms maintain homogeneous neuronal behavior among neurons that exhibit substantial variability in the expression levels of their ionic conductances. In contrast, the mechanisms, which generate heterogeneous neuronal behavior across a neuronal population, remain poorly understood. We addressed this problem in the dorsal cochlear nucleus, where principal neurons exist in two qualitatively distinct states: spontaneously active or not spontaneously active. Our studies reveal that distinct activity states are generated by the differential levels of a Ba2+-sensitive, inwardly rectifying potassium conductance (K-ir). Variability in K-ir maximal conductance causes variations in the resting membrane potential (RMP). Low K-ir conductance depolarizes RMP to voltages above the threshold for activating subthreshold-persistent sodium channels (Na-p). Once Na-p channels are activated, the RMP becomes unstable, and spontaneous firing is triggered. Our results provide a biophysical mechanism for generating neural heterogeneity, which may play a role in the encoding of sensory information.
Resumo:
Kaurenoic acid [ent-kaur-16-en-19-oic acid (1)] is a diterpene present in several plants including Sphagneticola trilobata. The only documented evidence for its antinociceptive effect is that it inhibits the writhing response induced by acetic acid in mice. Therefore, the analgesic effect of 1 in different models of pain and its mechanisms in mice were investigated further. Intraperitoneal and oral treatment with 1 dose-dependently inhibited inflammatory nociception induced by acetic acid. Oral treatment with 1 also inhibited overt nociception-like behavior induced by phenyl-p-benzoquinone, complete Freund's adjuvant (CFA), and both phases of the formalin test. Compound 1 also inhibited acute carrageenin- and PGE(2)-induced and chronic CFA-induced inflammatory mechanical hyperalgesia. Mechanistically, 1 inhibited the production of the hyperalgesic cytokines TNF-alpha and IL-1 beta. Furthermore, the analgesic effect of 1 was inhibited by L-NAME, ODQ, KT5823, and glybenclamide treatment, demonstrating that such activity also depends on activation of the NO-cyclic GMP-protein kinase G-ATP-sensitive potassium channel signaling pathway, respectively. These results demonstrate that 1 exhibits an analgesic effect in a consistent manner and that its mechanisms involve the inhibition of cytokine production and activation of the NO-cyclic GMP-protein lcinase G-ATP-sensitive potassium channel signaling pathway.
Resumo:
The fine particles serving as cloud condensation nuclei in pristine Amazonian rainforest air consist mostly of secondary organic aerosol. Their origin is enigmatic, however, because new particle formation in the atmosphere is not observed. Here, we show that the growth of organic aerosol particles can be initiated by potassium-salt-rich particles emitted by biota in the rainforest. These particles act as seeds for the condensation of low- or semi-volatile organic compounds from the atmospheric gas phase or multiphase oxidation of isoprene and terpenes. Our findings suggest that the primary emission of biogenic salt particles directly influences the number concentration of cloud condensation nuclei and affects the microphysics of cloud formation and precipitation over the rainforest.
Resumo:
Three chemical species related to biomass burning, levoglucosan, potassium and water-soluble organic carbon (WSOC), were measured in aerosol samples collected in a rural area on the outskirts of the municipality of Ourinhos (Sao Paulo State, Brazil). This region is representative of the rural interior of the State, where the economy is based on agro-industrial production, and the most important crop is sugar cane. The manual harvesting process requires that the cane be first burned to remove excess foliage, leading to large emissions of particulate materials to the atmosphere. Most of the levoglucosan (68-89%) was present in small particles (<1.5 mu m), and its concentration in total aerosol ranged from 25 to 1186 ng m(-3). The highest values were found at night, when most of the biomass burning occurs. In contrast, WSOC showed no diurnal pattern, with an average concentration of 5.38 +/- 2.97 mu g m(-3) (n = 27). A significant linear correlation between levoglucosan and WSOC (r = 0.54; n = 26; p < 0.0001) confirmed that biomass burning was in fact an important source of WSOC in the study region. A moderate (but significant) linear correlation between levoglucosan and potassium concentrations (r = 0.62; n = 40; p < 0.0001) was indicative of the influence of other sources of potassium in the study region, such as soil resuspension and fertilizers. When only the fine particles (<1.5 pm; typical of biomass burning) were considered, the linear coefficient increased to 0.91 (n = 9). In this case, the average levoglucosan/K+ ratio was 0.24, which may be typical of biomass burning in the study region. This ratio is about 5 times lower than that previously found for Amazon aerosol collected during the day, when flaming combustion prevails. This suggests that the levoglucosan/K+ ratio may be especially helpful for characterization of the type of vegetation burned (such as crops or forest), when biomass-burning is the dominant source of potassium. The relatively high concentrations of WSOC (and inorganic ions) suggest an important influence on the formation of cloud condensation nuclei, which is likely to affect cloud formation and precipitation patterns. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The lyotropic liquid crystalline quaternary mixture made of potassium laurate (KL), potassium sulphate, 1-undecanol and water was investigated by experimental optical methods (optical microscopy and laser conoscopy). In a particular temperature and relative concentrations range, the three nematic phases (two uniaxial and one biaxial) were identified. The biaxial domain in the temperature/KL concentration surface is larger when compared to other lyotropic mixtures. Moreover, this new mixture gives nematic phases with higher birefringence than similar systems. The behavior of the symmetric tensor order parameter invariants sigma(3) and sigma(2) calculated from the measured optical birefringences supports that the uniaxial-to-biaxial transitions are of second order, described by a mean-field theory.
Resumo:
The nutritional management of seedlings in the nursery is one of the most important practices that influence seedling quality. The aim of this work was to evaluate the effect of nitrogen, phosphorus and potassium on the development of Schizolobium amazonicum seedlings grown in 250 cm(3) containers with a commercial substrate in the North of Mato Grosso State, Brazil. The experimental design was completely randomized design with five treatments and five replications, each replication being represented by 24 seedlings. The treatments were: control (only commercial substrate); nitrogen fertilization (150 g m(-3) N using ammonium sulfate + 1.0 kg of ammonium sulfate dissolved in 100 L of water and applied in coverage); phosphorus fertilization (300 g P2O5 m(-3) using simple superphosphate); potassium fertilization (100 g m(-3) K2O using potassium chloride + 0.3 kg of potassium chloride dissolved in 100 L of water and applied in coverage) and; complete (a mixture of the three nutrients, 150, 300 and 100 g m(-3) N, P2O5 and K2O, respectively + 1.0 kg of ammonium sulfate + 0.3 kg of potassium chloride). The commercial substrate was composted milled pine bark plus vermiculite. Evaluations of the seedlings were performed at 90 days after sowing. The complete treatment (NPK) gave the highest values for biometric and best plant indices, which express the quality. When analyzing nutrients in isolation; potassium had the lowest effect. Based on these results it can be recommended to fertilize Schizolobium amazonicum seedlings in nurseries with 150, 300 and 100 g m(-3) of N, P2O5 and K2O, respectively, plus 1.0 kg of sulfate ammonium and 0.3 kg of potassium chloride applied in coverage.
Resumo:
Lyotropic liquid crystalline quaternary mixtures of potassium laurate (KL), potassium sulphate (K2SO4)/alcohol (n-OH)/water, with the alcohols having different numbers of carbon atoms in the alkyl chain (n), from 1-octanol to 1-hexadecanol, were investigated by optical techniques (optical microscopy and laser conoscopy). The biaxial nematic phase domain is present in a window of values of n = n(KL) +/- 2, where n(KL) = 11 is the number of carbon atoms in the alkyl chain of KL. The biaxial phase domain became smaller and the uniaxial-to-biaxial phase transition temperatures shifted to relatively higher temperatures upon going from 1-nonanol to 1-tridecanol. Moreover, compared with other lyotropic mixtures these new mixtures present high birefringence values, which we expect to be related to the micellar shape anisotropy. Our results are interpreted assuming that alcohol molecules tend to segregate in the micelles in a way that depends on the relative value of n with respect to nKL. The larger the value of n, the more alcohol molecules tend to be located in the curved parts of the micelle, favoring the uniaxial nematic calamitic phase with respect to the biaxial and uniaxial discotic nematic phases.
Resumo:
The ether A go-go (Eag) gene encodes the voltage-gated potassium (K+) ion channel Kv10.1, whose function still remains unknown. As dopamine may directly affect K+ channels, we evaluated whether a nigrostriatal dopaminergic lesion induced by the neurotoxin 6-hydroxydopamine (6-OHDA) would alter Eag1-K+ channel expression in the rat basal ganglia and related brain regions. Male Wistar rats received a microinjection of either saline or 6-OHDA (unilaterally) into the medial forebrain bundle. The extent of the dopaminergic lesion induced by 6-OHDA was evaluated by apomorphine-induced rotational behavior and by tyrosine hydroxylase (TH) immunoreactivity. The 6-OHDA microinjection caused a partial or complete lesion of dopaminergic cells, as well as a reduction of Eag1+ cells in a manner proportional to the extent of the lesion. In addition, we observed a decrease in TH immunoreactivity in the ipsilateral striatum. In conclusion, the expression of the Eag1-K+-channel throughout the nigrostriatal pathway in the rat brain, its co-localization with dopaminergic cells and its reduction mirroring the extent of the lesion highlight a physiological circuitry where the functional role of this channel can be investigated. The Eag1-K+ channel expression in dopaminergic cells suggests that these channels are part of the diversified group of ion channels that generate and maintain the electrophysiological activity pattern of dopaminergic midbrain neurons.
Resumo:
Understanding the underlying mechanisms that account for the impact of potassium (K) fertilization and its replacement by sodium (Na) on tree growth is key to improving the management of forest plantations that are expanding over weathered tropical soils with low amounts of exchangeable bases. A complete randomized block design was planted with Eucalyptus grandis (W. Hill ex Maiden) to quantify growth, carbon uptake and carbon partitioning using a carbon budget approach. A combination of approaches including the establishment of allometric relationships over the whole rotation and measurements of soil CO2 efflux and aboveground litterfall at the end of the rotation were used to estimate aboveground net production (ANPP), total belowground carbon flux and gross primary production (GPP). The stable carbon isotope (delta C-13) of stem wood alpha-cellulose produced every year was used as a proxy for stomatal limitation of photosynthesis. Potassium fertilization increased GPP and decreased the fraction of carbon allocated belowground. Aboveground net production was strongly enhanced, and because leaf lifespan increased, leaf biomass was enhanced without any change in leaf production, and wood production (P-W) was dramatically increased. Sodium application decreased the fraction of carbon allocated belowground in a similar way, and enhanced GPP, ANPP and P-W, but to a lesser extent compared with K fertilization. Neither K nor Na affected delta C-13 of stem wood alpha-cellulose, suggesting that water-use efficiency was the same among the treatments and that the inferred increase in leaf photosynthesis was not only related to a higher stomatal conductance. We concluded that the response to K fertilization and Na addition on P-W resulted from drastic changes in carbon allocation.
Resumo:
Urea has been considered as a promising alternative nitrogen source for the cultivation of Arthrospira platensis if it is possible to avoid ammonia toxicity; however, this procedure can lead to periods of nitrogen shortage. This study shows that the addition of potassium nitrate, which acts as a nitrogen reservoir, to cultivations carried out with urea in a fed-batch process can increase the maximum cell concentration (Xm) and also cell productivity (PX). Using response surface methodology, the model indicates that the estimated optimum Xm can be achieved with 17.3 mM potassium nitrate and 8.9 mM urea. Under this condition an Xm of 6077 +/- 199 mg/L and a PX of 341.5 +/- 19.1 mg L1day1 were obtained.