35 resultados para Postural instability
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Objectives To investigate the effect of Nintendo Wii (TM)-based motor cognitive training versus balance exercise therapy on activities of daily living in patients with Parkinson's disease. Design Parallel, prospective, single-blind, randomised clinical trial. Setting Brazilian Parkinson Association. Participants Thirty-two patients with Parkinson's disease (Hoehn and Yahr stages 1 and 2). Interventions Fourteen training sessions consisting of 30 minutes of stretching, strengthening and axial mobility exercises, plus 30 minutes of balance training. The control group performed balance exercises without feedback or cognitive stimulation, and the experimental group performed 10 Wii Fit (TM) games. Main outcome measure Section II of the Unified Parkinson's Disease Rating Scale (UPDRS-II). Randomisation Participants were randomised into a control group (n = 16) and an experimental group (n = 16) through blinded drawing of names. Statistical analysis Repeated-measures analysis of variance (RM-ANOVA). Results Both groups showed improvement in the UPDRS-II with assessment effect (RM-ANOVA P < 0.001, observed power = 0.999). There was no difference between the control group and the experimental group before training {8.9 [standard deviation (SD) 2.9] vs 10.1 (SD 3.8)}, after training [7.6 (SD 2.9) vs 8.1 (SD 3.5)] or 60 days after training [8.1 (SD 3.2) vs 8.3 (SD 3.6)]. The mean difference of the whole group between before training and after training was -0.9 (SD 2.3, 95% confidence interval -1.7 to -0.6). Conclusion Patients with Parkinson's disease showed improved performance in activities of daily living after 14 sessions of balance training, with no additional advantages associated with the Wii-based motor and cognitive training. Registered on http://www.clinicaltrials.gov (identifier: NCT01580787). (C) 2012 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.
Resumo:
OBJECTIVES: To determine the frequency of medical adverse events in elderly patients admitted to an acute care geriatric unit, the predictive factors of occurrence, and the correlation between adverse events and hospital mortality rates. METHODS: This prospective study included 171 admissions of patients aged 60 years and older in the acute care geriatric unit in a teaching hospital in Brazil between 2007 and 2008. The following variables were assessed at admission: the patient age, gender, number of prescription drugs, geriatric syndromes (e. g., immobility, postural instability, dementia, depression, delirium, and incontinence), comorbidities, functional status (evaluated with the Katz Index of Independence in Activities of Daily Living), and severity of illness (evaluated with the Simplified Acute Physiology Score II). The incidence of delirium, infection, mortality, and the prescription of potentially inappropriate medications (based on the Beers criteria) were assessed during hospitalization. An observer who was uninvolved in patient care reported the adverse events. RESULTS: The mean age of the sample was 78.12 years. A total of 187 medical adverse events occurred in 94 admissions (55%). The predictors of medical adverse events were undetermined. Compared with the patients with no adverse events, the patients with medical adverse events had a significantly longer hospital stay (21.41 +/- 15.08 days versus 10.91 +/- 7.21 days) and a higher mortality rate (39 deaths [41.5%] versus 17 deaths [22.1%]). Mortality was significantly predicted by the Simplified Acute Physiology Score II score (odds ratio [OR] = 1.13, confidence interval [CI] 95%, 1.07 to 1.20), the Katz score (OR = 1.47, CI 95%, 1.18 to 1.83), and medical adverse events (OR = 3.59, CI 95%, 1.55 to 8.30). CONCLUSION: Medical adverse events should be monitored in every elderly hospitalized patient because there is no risk profile for susceptible patients, and the consequences of adverse events are serious, sometimes leading to longer hospital stays or even death.
Resumo:
OBJECTIVE: The aim of the present study was to evaluate the influence of anthropometric characteristics and gender on postural balance in adults. One hundred individuals were examined (50 males, 50 females; age range 20-40 years). METHODS: The following body composition measurements were collected (using bone densitometry measurements): fat percentage (% fat), tissue (g), fat (g), lean mass (g), bone mineral content (g), and bone mineral density (g/cm(2)). In addition, the following anthropometric measurements were collected: body mass (kg), height (cm), length of the trunk-cephalic region (cm), length of the lower limbs (cm) and length of the upper limbs (cm). The following indices were calculated: body mass index (kg/m(2)), waist-hip ratio and the support base (cm 2). Also, a postural balance test was performed using posturography variables with open and closed eyes. RESULTS: The analysis revealed poor correlations between postural balance and the anthropometric variables. A multiple linear regression analysis demonstrated that the whole group (female and male) height explained 12% of the medial-lateral displacement, 10% of the speed of oscillation, and 11% of the displacement area. The length of the trunk-cephalic length explained 6% of the displacement in the anteroposterior direction. With eyes closed, the support base and height explained 18% of the medial displacement, and the lateral height explained 10% of the displacement speed and 5% of the scroll area. CONCLUSION: Measured using posturography, the postural balance was only slightly influenced by the anthropometric variables, both with open and closed eyes. Height was the anthropometric variable that most influenced postural balance, both in the whole group and separately for each gender. Postural balance was more influenced by anthropometric factors in males than females.
Resumo:
Temporally-growing frontal meandering and occasional eddy-shedding is observed in the Brazil Current (BC) as it flows adjacent to the Brazilian Coast. No study of the dynamics of this phenomenon has been conducted to date in the region between 22 degrees S and 25 degrees S. Within this latitude range, the flow over the intermediate continental slope is marked by a current inversion at a depth that is associated with the Intermediate Western Boundary Current (IWBC). A time series analysis of 10-current-meter mooring data was used to describe a mean vertical profile for the BC-IWBC jet and a typical meander vertical structure. The latter was obtained by an empirical orthogonal function (EOF) analysis that showed a single mode explaining 82% of the total variance. This mode structure decayed sharply with depth, revealing that the meandering is much more vigorous within the BC domain than it is in the IWBC region. As the spectral analysis of the mode amplitude time series revealed no significant periods, we searched for dominant wavelengths. This search was done via a spatial EOF analysis on 51 thermal front patterns derived from digitized AVHRR images. Four modes were statistically significant at the 95% confidence level. Modes 3 and 4, which together explained 18% of the total variance, are associated with 266 and 338-km vorticity waves, respectively. With this new information derived from the data, the [Johns, W.E., 1988. One-dimensional baroclinically unstable waves on the Gulf Stream potential vorticity gradient near Cape Hatteras. Dyn. Atmos. Oceans 11, 323-350] one-dimensional quasi-geostrophic model was applied to the interpolated mean BC-IWBC jet. The results indicated that the BC system is indeed baroclinically unstable and that the wavelengths depicted in the thermal front analysis are associated with the most unstable waves produced by the model. Growth rates were about 0.06 (0.05) days(-1) for the 266-km (338-km) wave. Moreover, phase speeds for these waves were low compared to the surface BC velocity and may account for remarks in the literature about growing standing or stationary meanders off southeast Brazil. The theoretical vertical structure modes associated with these waves resembled very closely to the one obtained for the current-meter mooring EOF analysis. We interpret this agreement as a confirmation that baroclinic instability is an important mechanism in meander growth in the BC system. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
With Hg-199 atoms confined in an optical lattice trap in the Lamb-Dicke regime, we obtain a spectral line at 265.6 nm for which the FWHM is similar to 15 Hz. Here we lock an ultrastable laser to this ultranarrow S-1(0) - P-3(0) clock transition and achieve a fractional frequency instability of 5.4 x 10(-15) / root tau for tau <= 400 s. The highly stable laser light used for the atom probing is derived from a 1062.6 nm fiber laser locked to an ultrastable optical cavity that exhibits a mean drift rate of -6.0 x 10(-17) s-(1) (-16.9 mHzs(-1) at 282 THz) over a six month period. A comparison between two such lasers locked to independent optical cavities shows a flicker noise limited fractional frequency instability of 4 x 10(-16) per cavity. (c) 2012 Optical Society of America
Resumo:
Esse estudo teve como objetivo examinar possíveis alterações na dinâmica intrínseca de crianças e adultos decorrentes de informações externas na realização de uma tarefa de manutenção da postura ereta. Participaram do estudo dez crianças de 8 anos de idade e dez adultos jovens de ambos os gêneros. Eles permaneceram na posição ereta dentro de uma sala móvel que foi movimentada continuamente para frente e para trás. Os participantes recebiam informação sobre o movimento da sala e eram solicitados a não oscilar ou a oscilar junto com o movimento da mesma. Os resultados mostraram que a manipulação da informação visual induziu oscilação corporal correspondente (dinâmica intrínseca) em crianças e adultos. Informação sobre o movimento da sala e solicitação de uma ação (informação comportamental) alteraram o relacionamento entre informação visual e oscilação corporal. Crianças apresentaram mais dificuldades em alterar a dinâmica intrínseca do que adultos, indicando que elas são mais dependentes da dinâmica intrínseca do que adultos. Esses resultados trazem implicações importantes para a situação de ensino-aprendizagem, pois indica que aprendizagem envolvendo crianças deve ser estruturada propiciando condições mais favoráveis para alterações na dinâmica intrínseca para que os objetivos da mesma sejam alcançados.
Resumo:
Optimal levels of noise stimulation have been shown to enhance the detection and transmission of neural signals thereby improving the performance of sensory and motor systems. The first series of experiments in the present study aimed to investigate whether subsensory electrical noise stimulation applied over the triceps surae (TS) in seated subjects decreases torque variability during a force-matching task of isometric plantar flexion and whether the same electrical noise stimulation decreases postural sway during quiet stance. Correlation tests were applied to investigate whether the noise-induced postural sway decrease is linearly predicted by the noise-induced torque variability decrease. A second series of experiments was conducted to investigate whether there are differences in torque variability between conditions in which the subsensory electrical noise is applied only to the TS, only to the tibialis anterior (TA) and to both TS and TA, during the force-matching task with seated subjects. Noise stimulation applied over the TS muscles caused a significant reduction in force variability during the maintained isometric force paradigm and also decreased postural oscillations during quiet stance. Moreover, there was a significant correlation between the reduction in force fluctuation and the decrease in postural sway with the electrical noise stimulation. This last result indicates that changes in plantar flexion force variability in response to a given subsensory random stimulation of the TS may provide an estimate of the variations in postural sway caused by the same subsensory stimulation of the TS. We suggest that the decreases in force variability and postural sway found here are due to stochastic resonance that causes an improved transmission of proprioceptive information. In the second series of experiments, the reduction in force variability found when noise was applied to the TA muscle alone did not reach statistical significance, suggesting that TS proprioception gives a better feedback to reduce force fluctuation in isometric plantar flexion conditions.
Resumo:
Background: Exercise programs have proved to be helpful for frail older adults. This study aimed to investigate the effects of an exercise program with a focus on postural control exercises in frail older adults. Method: Twenty-six older adults (76.7 +/- 4.9 years) deemed clinically stable, chosen from the Falls Unit, University Hospital Mutua Terrassa, Barcelona, Spain, participated in this single-group study. Volunteers' postural control was evaluated using the Timed Up and Go test (TUG) and the Guralnik test battery, and their static and dynamic posturography were evaluated using the Synapsys Posturography System (R). These evaluations were performed before and after the intervention program, which included an educational session and two weekly 1-hour sessions over an 8-week period of stretching exercises, proprioception, balance, and motor coordination. Data were analyzed using the Student's t-test or the Wilcoxon test, with a significance level of 5%. Results: The TUG and Guralnik tests did not show significant differences. Concerning static posturography, there was improvement in the base of support (P = 0.006), anteroposterior displacement with eyes open (P = 0.02) and closed (P = 0.03), and the total amplitude of the center of pressure with eyes closed (P = 0.02). Regarding dynamic posturography, a decrease of the oscillation speed in the anteroposterior direction (P = 0.01) was observed in individuals with their eyes open. Conclusion: The program used in this study was safe and was able to promote some improvement in postural control, especially in the anteroposterior direction and in the base of support. However, it is noteworthy that further improvements could be obtained from a program of longer duration and greater frequency.
Resumo:
Dense enough compact objects were recently shown to lead to an exponentially fast increase of the vacuum energy density for some free scalar fields properly coupled to the spacetime curvature as a consequence of a tachyonic-like instability. Once the effect is triggered, the star energy density would be overwhelmed by the vacuum energy density in a few milliseconds. This demands that eventually geometry and field evolve to a new configuration to bring the vacuum back to a stationary regime. Here, we show that the vacuum fluctuations built up during the unstable epoch lead to particle creation in the final stationary state when the tachyonic instability ceases. The amount of created particles depends mostly on the duration of the unstable epoch and final stationary configuration, which are open issues at this point. We emphasize that the particle creation coming from the tachyonic instability will occur even in the adiabatic limit, where the spacetime geometry changes arbitrarily slowly, and therefore is quite distinct from the usual particle creation due to the change in the background geometry.
Resumo:
. Children with haemophilia often bleed inside joints and muscles, which may impair postural adjustments. These postural adjustments are necessary to control postural balance during daily activities. The inability to quickly recover postural balance could elevate the risk of bleeding. To determine whether children with haemophilia have impaired postural adjustment after an unexpected perturbation compared with healthy children. Twenty children with haemophilia comprised the haemophilic group (HG), and 20 healthy, age-paired children comprised the control group (CG). Subjects stood on a force plate, and 4% of the subjects body weight was applied via a pulley system to a belt around the subjects trunks. The centre of pressure (COP) displacement was measured after the weight was unexpectedly released to produce a controlled postural perturbation followed by postural adjustment to recover balance. The subjects postural adjustments in eight subsequent intervals of 1 s (t1t8), beginning with the moment of weight removal, were compared among intervals and between groups. The applied perturbation magnitudes were the same for both groups, and no difference was observed between the groups in t1. However, the COP displacement in t2 in the HG was significantly higher than in the CG. No differences were observed between the groups in the other intervals. Within-group analysis showed that the COP was higher in t2 than in t4 (P = 0.016), t5 (P = 0.001) and t8 (P = 0.050) in the HG. No differences were observed among intervals in the CG. Children with haemophilia demonstrated differences in postural adjustment while undergoing unexpected balance perturbations when compared with healthily children.
Resumo:
Human adult stem cells (hASCs) offer a potentially renewable source of cell types that are easily isolated and rapidly expanded for use in regenerative medicine and cell therapies without the complicating ethical problems that are associated with embryonic stem cells. However, the eventual therapeutic use of hASCs requires that these cells and their derivatives maintain their genomic stability. There is currently a lack of systematic studies that are aimed at characterising aberrant chromosomal changes in cultured ASCs over time. However, the presence of mosaicism and accumulation of karyotypic abnormalities within cultured cell subpopulations have been reported. To investigate cytogenetic integrity of cultured human dental stem cell (hDSC) lines, we analysed four expanded hDSC cultures using classical G banding and fluorescent in situ hybridisation (FISH) with X chromosome specific probe. Our preliminary results revealed that about 70% of the cells exhibited karyotypic abnormalities including polyploidy, aneuploidy and ring chromosomes. The heterogeneous spectrum of abnormalities indicates a high frequency of chromosomal mutations that continuously arise upon extended culture. These findings emphasise the need for the careful analysis of the cytogenetic stability of cultured hDSCs before they can be used in clinical therapies.
Resumo:
Long-haul drivers work in irregular schedules due to load delivery demands. In general, driving and sleeping occur at irregular times and, consequently, partial sleep deprivation and/or circadian misalignment may emerge and result in sleepiness at the wheel. In this way, the aim of this study was to verify changes in the postural control parameters of professional drivers after one-night working. Eight male truck drivers working at night - night drivers (ND) and nine day drivers (DD) volunteered to participate in this study. The night drivers' postural stability was assessed immediately before and after an approximately 430 km journey by two identical force platforms at departure and arrival sites. The DD group was measured before and after a day's work. An interaction effect of time of day and type of shift in both conditions: eyes open (p < 0.01) and eyes closed (p < 0.001) for amplitude of mediolateral movements was observed. Postural stability, measured by force platform, is affected by a night of work, suggesting that it could be an effect of circadian and homeostatic influences over postural control.
Resumo:
Objective: To compare the efficacy of balance training associated with muscle strengthening or stretching, relative to no intervention, in the postural control of elderly women with osteoporosis. Design: A randomized, controlled trial. Subjects and interventions: Sample consisted of 50 women aged 65 years or older, with osteoporosis, randomized into one of three groups: strengthening group (n = 17) performed balance training with muscle strengthening; stretching group (n = 17) performed balance training with stretching; and control group (n = 16), no activities. Interventions lasted eight weeks, twice a week, 60 minutes a day. Main measures: Postural control was evaluated by the modified Clinical Test of Sensory Interaction for Balance (CTSIBm) and Limits of Stability Test. Strength was assessed by dynamometry and the shortening of the hamstrings by goniometry. Results: Relative to controls, participants in the strengthening group displayed significantly increased dorsiflexion strength and knee flexion strength, as well as centre of pressure velocity, directional control, and oscillation velocity (CTSIBm test). The stretching group had significantly improvements in hamstring length, knee flexion strength, centre of pressure velocity, and amplitude of movements. Relative to the stretching group, the strengthening group yielded better knee extension strength and directional control. Conclusion: The results suggest that both interventions are effective in improving postural control when compared to the control group, and the strengthening group was superior to the stretching group in knee extension strength and in directional control.
Resumo:
We aimed to evaluate the influence of different types of wheelchair seats on paraplegic individuals' postural control using a maximum anterior reaching test. Balance evaluations during 50, 75, and 90% of each individual's maximum reach in the forward direction using two different cushions on seat (one foam and one gel) and a no-cushion condition were carried out on 11 individuals with a spinal cord injury (SCI) and six individuals without SCI. Trunk anterior displacement and the time spent to perform the test were assessed. No differences were found for the three types of seats in terms of trunk anterior displacement and the time spent to perform the test when intragroup comparisons were made in both groups (P > 0.05). The intergroup comparison showed that body displacement was less prominent and the time spent to perform the test was more prolonged for individuals with SCI (P < 0.05), which suggests a postural control deficit. The seat type did not affect the ability of the postural control system to maintain balance during the forward-reaching task.
Resumo:
OBJECTIVES: The consequences of breast hypertrophy have been described based on the alteration of body mass distribution, leading to an impact on psychological and physical aspects. The principles of motor control suggest that breast hypertrophy can lead to sensorimotor alterations and the impairment of body balance due to postural misalignment. The aim of this study is to evaluate the postural control of women with breast hypertrophy under different sensory information conditions. METHOD: This cross-sectional study included 14 women with breast hypertrophy and 14 without breast hypertrophy, and the mean ages of the groups were 39 +/- 15 years and 39 +/- 16 years, respectively. A force platform was used to assess the sensory systems that contribute to postural control: somatosensory, visual and vestibular. Four postural conditions were sequentially tested: eyes open and fixed platform, eyes closed and fixed platform, eyes open and mobile platform, and eyes closed and mobile platform. The data were processed, and variables related to the center of pressure were analyzed for each condition. The Kruskal-Wallis test was used to compare the conditions between the groups for the area of center of pressure displacement and the velocity of center of pressure displacement in the anterior-posterior and medial-lateral directions. The alpha level error was set at 0.05. RESULTS: Women with breast hypertrophy presented an area that was significantly higher for three out of four conditions and a higher velocity of center of pressure displacement in the anterior-posterior direction under two conditions: eyes open and mobile platform and eyes closed and mobile platform. CONCLUSIONS: Women with breast hypertrophy have altered postural control, which was demonstrated by the higher area and velocity of center of pressure displacement.