13 resultados para Phosphotransferases (Alcohol Group Acceptor) -- chemistry
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Abstract Objectives In this work we investigated how immunological dysfunction and malnutrition interact in alcoholic and viral aetiologies of cirrhosis. Methods To investigate the matter, 77 cirrhotic patients divided in three aetiologies [Alcohol, HCV and Alcohol + HCV) and 32 controls were prospectivelly and sequentially studied. Parameters of humoral immunity (Components 3 and 4 of seric complement and immunoglobulins A M, G and E) and of cellular immunity (total leukocytes and lymphocytes in peripheral blood, T lymphocytes subpopulations, CD4+ and CD8+, CD4+/CD8+ ratio and intradermic tests of delayed hypersensitivity), as well as nutrititional parameters: anthropometric measures, serum albumin and transferrin were evaluated. Results Multiple statistical comparisons showed that IgM was higher in HCV group; IgG was significantly elevated in both HCV and Alcohol + HCV, whereas for the Alcohol group, IgE was found at higher titles. The analysis of T- lymphocytes subpopulations showed no aetiologic differences, but intradermic tests of delayed hypersensitivity did show greater frequency of anergy in the Alcohol group. For anthropometric parameters, the Alcohol +HCV group displayed the lowest triceps skinfold whereas creatinine – height index evaluation was more preserved in the HCV group. Body mass index, arm muscle area and arm fat area showed that differently from alcohol group, the HCV group was similar to control. Conclusion Significant differences were found among the main aetiologies of cirrhosis concerning immunological alterations and nutritional status: better nutrition and worse immunology for HCV and vice-versa for alcohol.
Resumo:
Although there are a large number of studies focused on binge drinking and traffic risk behaviors (TRB), little is known regarding low levels of alcohol consumption and its association to TRB. The aim of this cross-sectional study is to examine the association of low to moderate alcohol intake pattern and TRB in college students in Brazil. 7037 students from a National representative sample were selected under rigorous inclusion criteria. All study participants voluntarily fulfilled a structured, anonymous, and self-questionnaire regarding alcohol and drug use, social-demographic data, and TRB. Alcohol was assessed according to the average number of alcoholic units consumed on standard occasions over the past 12 months. The associations between alcohol intake and TRB were summarized with odds ratio and their confidence interval obtained from logistic regression. Compared with abstainers students who consumed only one alcohol unit had the risk of being a passenger in a car driven by a drunk driver increased by almost four times, students who reported using five or more units were increased by almost five times the risk of being involved in a car crash. Compared with students who consumed one alcohol unit, the risk of driving under the influence of alcohol increased four times in students using three alcohol units. Age group, use of illicit drugs, employment status, gender, and marital status significantly influenced occurrence of TRB among college students. Our study highlights the potential detrimental effects of low and moderate pattern of alcohol consumption and its relation to riding with an intoxicated driver and other TRB. These data suggest that targeted interventions should be implemented in order to prevent negative consequences due to alcohol use in this population. (C) 2012 Elsevier Inc. All rights reserved,
Resumo:
Assuming that textbooks give literary expression to cultural and ideological values of a nation or group, we propose the analysis of chemistry textbooks used in Brazilian universities throughout the twentieth century. We analyzed iconographic and textual aspects of 31 textbooks which had significant diffusion in the context of Brazilian universities at that period. As a result of the iconographic analysis, nine categories of images were proposed: (1) laboratory and experimentation, (2) industry and production, (3) graphs and diagrams, (4) illustrations related to daily life, (5) models, (6) illustrations related to the history of science, (7) pictures or diagrams of animal, vegetable or mineral samples, (8) analogies and (9) concepts of physics. The distribution of images among the categories showed a different emphasis in the presentation of chemical content due to a commitment to different conceptions of chemistry over the period. So, we started with chemistry as an experimental science in the early twentieth century, with an emphasis change to the principles of chemistry from the 1950s, culminating in a chemistry of undeniable technological influence. Results showed that reflections not only on the history of science, but on the history of science education, may be useful for the improvement of science education.
Resumo:
Information on the solvation in mixtures of water, W, and the ionic liquids, ILs, 1-allyl-3-R-imidazolium chlorides; R = methyl, 1-butyl, and 1-hexyl, has been obtained from the responses of the following solvatochromic probes: 2,6-dibromo-4-[(E)-2-(1-R-pyridinium-4-yl)ethenyl] phenolate, R = methyl, MePMBr2; 1-octyl, OcPMBr(2), and the corresponding quinolinium derivative, MeQMBr(2). A model developed for solvation in binary mixtures of W and molecular solvents has been extended to the present mixtures. Our objective is to assess the relevance to solvation of hydrogen-bonding and the hydrophobic character of the IL and the solvatochromic probe. Plots of the medium empirical polarity, E-T(probe) versus its composition revealed non-ideal behavior, attributed to preferential solvation by the IL and, more efficiently, by the IL-W hydrogen-bonded complex. The deviation from linearity increases as a function of increasing number of carbon atoms in the alkyl group of the IL, and is larger than that observed for solvation by W plus molecular solvents (1-propanol and 2-(1-butoxy)ethanol) that are more hydrophobic than the ILs investigated. This enhanced deviation is attributed to the more organized structure of the ILs proper, which persists in their aqueous solutions. MeQMBr(2) is more susceptible to solvent lipophilicity than OcPMBr(2), although the former probe is less lipophilic. This enhanced susceptibility agrees with the important effect of annelation on the contributions of the quinonoid and zwitterionic limiting structures to the ground and excited states of the probe, hence on its response to both medium composition and lipophilicity of the IL.
Resumo:
The rate of solvolysis of p-nitrophenyl phosphate (PNPP) dianion in DMSO/water strongly decreases by increasing water concentration. Addition of linear alcohols (methanol, propanol, butanol, pentanol, and hexanol) at constant DMSO/water molar ratio produced an even sharper rate decrease. Alkyl phosphate formation, resulting from PNPP solvolysis in ternary DMSO/water/alcohol mixtures, increased with alcohol concentration and was essentially temperature independent. Methanol and hexanol were the poorest nucleophiles under all conditions. Activation energies and enthalpies for solvolysis in ternary mixtures were similar and entropies varied with alcohol concentration. Taken together these results can be best interpreted in terms of a dissociative mechanism with the intervention of metaphosphate. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
In this work we examine the interaction between the 13-residue cationic antimicrobial peptide (AMP) tritrpticin (VRRFPWWWPFLRR, TRP3) and model membranes of variable lipid composition. The effect on peptide conformational properties was investigated by means of CD (circular dichroism) and fluorescence spectroscopies. Based on the hypothesis that the antibiotic acts through a mechanism involving toroidal pore formation, and taking into account that models of toroidal pores imply the formation of positive curvature, we used large unilamellar vesicles (LUV) to mimic the initial step of peptide-lipid interaction, when the peptide binds to the bilayer membrane, and micelles to mimic the topology of the pore itself, since these aggregates display positive curvature. In order to more faithfully assess the role of curvature, micelles were prepared with lysophospholipids containing (qualitatively and quantitatively) head groups identical to those of bilayer phospholipids. CD and fluorescence spectra showed that, while TRP3 binds to bilayers only when they carry negatively charged phospholipids. binding to micelles occurs irrespective of surface charge, indicating that electrostatic interactions play a less predominant role in the latter case. Moreover, the conformations acquired by the peptide were independent of lipid composition in both bilayers and micelles. However, the conformations were different in bilayers and in micelles, suggesting that curvature has an influence on the secondary structure acquired by the peptide. Fluorescence data pointed to an interfacial location of TRP3 in both types of aggregates. Nevertheless, experiments with a water soluble fluorescence quencher suggested that the tryptophan residues are more accessible to the quencher in micelles than in bilayers. Thus, we propose that bilayers and micelles can be used as models for the two steps of toroidal pore formation. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
A new series of donor acceptor copolymers were synthesized via the Witting route and applied as an active layer in organic thin-films solar cells. These copolymers are composed of fluorene thiophene and phenylene thiophene units. The ratio between those was systematically varied, and copolymers containing 0%, 50%, and 75% of phenylene thiophene were characterized and evaluated when used in photovoltaic devices. The copolymers' composition, photophysical, electrical, and morphological properties are addressed and correlated with device performance. The 50% copolymer ratio was found to be the best copolymer of the series, yielding a power conversion efficiency (PCE) under air mass (AM) 1.5 conditions of 2.4% in the bilayer heterojunction with the C-60 molecule. Aiming at flexible electronics applications, solutions based on the heterojunction of this copolymer with PCBM (6,6-phenyl-C-61-butyric acid methyl ester) were also successfully deposited using an inkjet printing method and used as an active layer in solar cells.
Resumo:
Parabens are antimicrobial preservatives widely used in pharmaceutical, cosmetic and food industries. The alkyl chain connected to the ester group defines some important physicochemical characteristics of these compounds, including the partition coefficient and redox properties. The voltammetric and computational analyses were carried out in order to evaluate the redox behavior of these compounds and other phenolic analogues. A strong correlation between chemical substituents inductive effects of parabens with redox potentials was observed. Using cyclic voltammetry and glassy carbon working electrode, only one irreversible anodic peak was observed around 0.8 V for methylparaben (MP), ethylparaben (EP), propylparaben (PP), butylparaben (BP), benzylparaben (BzP) and p-substituted phenolic analogues. The electrodonating inductive effect of alkyl groups was demonstrated by the anodic oxidation potential shift to lower values as the carbon number increases and, therefore the parabens (and other phenolic analogues) oxidation processes to the quinonoidic forms showed great dependence on the substituent pattern.
Resumo:
Four goyazensolide-type sesquiterpene lactones - lychnofolide, centratherin, goyazensolide and goyazensolide acetate - were thoroughly studied by NMR experimental techniques. H-1 NMR, C-13 NMR {H-1}, COSY, HMQC, HMBC, J-res. and NOE experiments were performed to provide the needed structural information. Complete and unequivocal assignment, including the determination of all multiplicities, was obtained for each structure and the data collections are presented in tables.
Resumo:
The aim of this research was to characterize emulsion systems (ES) containing nonionic ethoxylated surfactants by using rheological, microscopic, and thermogravimetric assays. Three formulations were developed: ES-1: 8.0% (w/w) oleth-20; ES-2: 4.0% (w/w) oleth-20/4.0% (w/w) steareth-21; and ES-3: 8.0% (w/w) steareth-21. The systems showed typical non-Newtonian pseudo-plastic behavior. The presence of a lamellar gel phase was observed for all systems, with ES-2 being more pronounced. Through thermogravimetry, the profiles of the three systems were found to be similar, consisting of two main events, the first one being characterized by loss of water and, beyond 110 degrees C, by loss of the oil phase.
Resumo:
PURPOSE: Investigate the morphological effects of chronic exposure to tobacco smoke inhalation and alcohol consumption on the lungs and on the growth of rats. METHODS: Sixty male Wistar rats were divided into four groups: control, tobacco, alcohol, tobacco + alcohol, for a period of study 260 days. Morphological analysis was conducted by optical and electron microscopy. Rat growth was investigated by measuring the snout-anus length, body mass index and body weight. RESULTS: The three groups exposed to the drugs presented lower growth and lower weight than the control group. The percentages of alveolitis, bronchiolitis and the mean alveolar diameter were greater, particularly in the groups exposed to tobacco smoke, but were not significantly different from the control group. Electron microscopy revealed more intense apoptotic and degenerative lesions in the smoking group, while degenerative lesions in the lamellar bodies were more intense with the association of both drugs. CONCLUSIONS: This experimental model showed morphological alterations observed by electron microscopy, principally due to tobacco smoke exposure. Alcohol and tobacco hindered the growth of rats, such that tobacco showed a greater effect on body length and alcohol on body weight.
Resumo:
Parabens are antimicrobial preservatives widely used in pharmaceutical, cosmetic and food industries. The alkyl chain connected to the ester group defines some important physicochemical characteristics of these compounds, including the partition coefficient and redox properties. The voltammetric and computational analyses were carried out in order to evaluate the redox behavior of these compounds and other phenolic analogues. A strong correlation between chemical substituents inductive effects of parabens with redox potentials was observed. Using cyclic voltammetry and glassy carbon working electrode, only one irreversible anodic peak was observed around 0.8 V for methylparaben (MP), ethylparaben (EP), propylparaben (PP), butylparaben (BP), benzylparaben (BzP) and p-substituted phenolic analogues. The electrodonating inductive effect of alkyl groups was demonstrated by the anodic oxidation potential shift to lower values as the carbon number increases and, therefore the parabens (and other phenolic analogues) oxidation processes to the quinonoidic forms showed great dependence on the substituent pattern.
Resumo:
The intermetallic compounds ScPdZn and ScPtZn were prepared from the elements by high-frequency melting in sealed tantalum ampoules. Both structures were refined from single crystal X-ray diffractometer data: YAlGe type, Cmcm, a = 429.53(8), b = 907.7(1), c = 527.86(1) pm, wR2 = 0.0375, 231 F2 values, for ScPdZn and a = 425.3(1), b = 918.4(2), c = 523.3(1) pm, wR2 = 0.0399, 213 F2 values for ScPtZn with 14 variables per refinement. The structures are orthorhombically distorted variants of the AlB2 type. The scandium and palladium (platinum atoms) build up ordered networks Sc3Pd3 and Sc3Pt3 (boron networks) which are slightly shifted with respect to each other. These networks are penetrated by chains of zinc atoms (262 pm in ScPtZn) which correspond to the aluminum positions, i.e. Zn(ScPd) and Zn(ScPt). The corresponding group-subgroup scheme and the differences in chemical bonding with respect to other AlB2-derived REPdZn and REPtZn compounds are discussed. 45Sc solid state NMR spectra confirm the single crystallographic scandium sites. From electronic band structure calculations the two compounds are found metallic with free electron like behavior at the Fermi level. A larger cohesive energy for ScPtZn suggests a more strongly bonded intermetallic than ScPdZn. Electron localization and overlap population analyses identify the largest bonding for scandium with the transition metal (Pd, Pt).