3 resultados para Phosphorus-doped Silicon
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
A Co-doped silica film was deposited on the surface of a Si(100) wafer and isothermally annealed at 750 degrees C to form spherical Co nanoparticles embedded in the silica film and a few atomic layer thick CoSi2 nanoplatelets within the wafer. The structure, morphology, and spatial orientation of the nanoplatelets were characterized. The experimental results indicate that the nanoplatelets exhibit hexagonal shape and a uniform thickness. The CoSi2 nanostructures lattice is coherent with the Si lattice, and each of them is parallel to one of the four planes belonging to the {111} crystallographic form of the host lattice. (C) 2012 American Institute of Physics. [doi:10.1063/1.3683493]
Resumo:
We report the first observation of photoluminescence enhancement in Er3+ doped GeO2-Bi2O3 glasses containing silicon nanocrystals (Si-NCs) excited by a laser operating at 980 nm. The growth of approximate to 200% in the intensity of the Er3+ transition S-4(3/2) -> I-4(15/2) (545 nm) and of approximate to 100% for transitions H-2(11/2) -> I-4(15/2) (525 nm), F-4(9/2) -> I-4(15/2) (660 nm), and I-4(5/2) -> I-4(13/2) (1530 nm) was observed in comparison with a reference sample that does not contain Si-NCs. The results open a new road for obtaining efficient Stokes and anti-Stokes emissions in germanate composites doped with rare-earth ions.
Resumo:
The effect of terbium (Tb) doping on the photoluminescence (PL) of crystalline aluminum nitride (c-AlN) and amorphous hydrogenated silicon carbide (a-SiC:H) thin films has been investigated for different Tb atomic concentrations. The samples were prepared by DC and RF magnetron reactive sputtering techniques covering the concentration range of Tb from 0.5 to 11 at.%. The Tb-related light emission versus the Tb concentration is reported for annealing temperatures of 450 °C, 750 °C and 1000 °C. In the low concentration region the intensity exhibits a linear increase and its slope is enhanced with the annealing temperature giving an activation energy of 0.106 eV in an Arrhenius plot. In the high concentration region an exponential decay is recorded which is almost independent on the host material, its structure and the annealing process.