24 resultados para PRECIPITATION POLYMERIZATION
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
This work investigates the eproducibility of precipitation simulated with an atmospheric general circulation model (AGCM) forced by subtropical South Atlantic sea surface temperature (SST) anomalies. This represents an important test of the model prior to investigating the impact of SSTs on regional climate. A five-member ensemble run was performed using the National Center for Atmospheric Research (NCAR) Community Climate Model, version 3 (CCM3). The CCM3 was forced by observed monthly SST over the South Atlantic from 20 to 60 S. The SST dataset used is from the Hadley Centre covering the period of September 1949-October 2001; this covers more than 50 yr of simulation. A statistical technique is used to determine the reproducibility in the CCM3 runs and to assess potential predictability in precipitation. Empirical orthogonal function analysis is used to reconstruct the ensemble using the most reproducible forced modes in order to separate the atmospheric response to local SST forcing from its internal variability. Results for reproducibility show a seasonal dependence, with higher values during austral autumn and spring. The spatial distribution of reproducibility shows that the tropical atmosphere is dominated by the underlying SSTs while variations in the subtropical-extratropical regions are primarily driven by internal variability. As such, changes in the South Atlantic convergence zone (SACZ) region are mainly dominated by internal atmospheric variability while the ITCZ has greater external dependence, making it more predictable. The reproducibility distribution reveals increased values after the reconstruction of the ensemble.
Resumo:
Objectives. The purpose of this study was to evaluate the reactivity and polymerization kinetics behavior of a model dental adhesive resin with water-soluble initiator systems. Methods. A monomer blend based on Bis-GMA, TEGDMA and HEMA was used as a model dental adhesive resin, which was polymerized using a thioxanthone type (QTX) as a photoinitiator. Binary and ternary photoinitiator systems were formulated using 1 mol% of each initiator. The co-initiators used in this study were ethyl 4-dimethylaminobenzoate (EDAB), diphenyliodonium hexafluorophosphate (DPIHFP), 1,3-diethyl-2-thiobarbituric acid (BARB), p-toluenesulfinic acid and sodium salt hydrate (SULF). Absorption spectra of the initiators were measured using a UV-Vis spectrophotometer, and the photon absorption energy (PAE) was calculated. The binary system camphorquinone (CQ)/amine was used as a reference group (control). Twelve groups were tested in triplicate. Fourier-transform infrared spectroscopy (FTIR) was used to investigate the polymerization reaction during the photoactivation period to obtain the degree of conversion (DC) and maximum polymerization rate (R-p(max)) profile of the model resin. Results. In the analyzed absorption profiles, the absorption spectrum of QTX is almost entirely localized in the UV region, whereas that of CQ is in the visible range. With respect to binary systems, CQ + EDAB exhibited higher DC and R-p(max) values. In formulations that contained ternary initiator systems, the group CQ + QTX + EDAB was the only one of the investigated experimental groups that exhibited an R-p(max) value greater than that of CQ + EDAB. The groups QTX + EDAB + DPIHFP and QTX + DPIHFP + SULF exhibited values similar to those of CQ + EDAB with respect to the final DC; however, they also exhibited lower reactivity. Significance. Water-soluble initiator systems should be considered as alternatives to the widely used CQ/amine system in dentin adhesive formulations. (C) 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objectives. To verify the hypothesis that crack analysis and a mechanical test would rank a series of composites in a similar order with respect to polymerization stress. Also, both tests would show similar relationships between stress and composite elastic modulus and/or shrinkage. Methods. Soda-lime glass discs (2-mm thick) with a central perforation (3.5-mm diameter) received four Vickers indentations 500 mu m from the cavity margin. The indent cracks were measured (500x) prior and 10 min after the cavity was restored with one of six materials (Kalore/KL, Gradia/GR, Ice/IC, Wave/WV, Majesty Flow/MF, and Majesty Posterior/MP). Stresses at the indent site were calculated based on glass fracture toughness and increase in crack length. Stress at the bonded interface was calculated using the equation for an internally pressurized cylinder. The mechanical test used a universal testing machine and glass rods (5-mm diameter) as substrate. An extensometer monitored specimen height (2 mm). Nominal stress was calculated dividing the maximum shrinkage force by the specimen cross-sectional area. Composite elastic modulus was determined by nanoindentation and post-gel shrinkage was measured using strain gages. Data were subjected to one-way ANOVA/Tukey or Kruskal-Wallis/Mann-Whitney tests (alpha: 5%). Results. Both tests grouped the composites in three statistical subsets, with small differences in overlapping between the intermediate subset (MF, WV) and the highest (MP, IC) or the lowest stress materials (KL, GR). Higher stresses were developed by composites with high modulus and/or high shrinkage. Significance. Crack analysis demonstrated to be as effective as the mechanical test to rank composites regarding polymerization stress. (c) 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objectives. The null hypothesis was that mechanical testing systems used to determine polymerization stress (sigma(pol)) would rank a series of composites similarly. Methods. Two series of composites were tested in the following systems: universal testing machine (UTM) using glass rods as bonding substrate, UTM/acrylic rods, "low compliance device", and single cantilever device ("Bioman"). One series had five experimental composites containing BisGMA:TEGDMA in equimolar concentrations and 60, 65, 70, 75 or 80 wt% of filler. The other series had five commercial composites: Filtek Z250 (3M ESPE), Filtek A110 (3M ESPE), Tetric Ceram (Ivoclar), Heliomolar (Ivoclar) and Point 4 (Kerr). Specimen geometry, dimensions and curing conditions were similar in all systems. sigma(pol) was monitored for 10 min. Volumetric shrinkage (VS) was measured in a mercury dilatometer and elastic modulus (E) was determined by three-point bending. Shrinkage rate was used as a measure of reaction kinetics. ANOVA/Tukey test was performed for each variable, separately for each series. Results. For the experimental composites, sigma(pol) decreased with filler content in all systems, following the variation in VS. For commercial materials, sigma(pol) did not vary in the UTM/acrylic system and showed very few similarities in rankings in the others tests system. Also, no clear relationships were observed between sigma(pol) and VS or E. Significance. The testing systems showed a good agreement for the experimental composites, but very few similarities for the commercial composites. Therefore, comparison of polymerization stress results from different devices must be done carefully. (c) 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objectives: This study evaluated the influence of the cavity configuration factor ("C-Factor") and light activation technique on polymerization contraction forces of a Bis-GMA-based composite resin (Charisma, Heraeus Kulzer). Material and Methods: Three different pairs of steel moving bases were connected to a universal testing machine (Emic DL 500): groups A and B - 2x2 mm (CF=0.33), groups C and D - 3x2 mm (CF=0.66), groups E and F - 6x2 mm (CF=1.5). After adjustment of the height between the pair of bases so that the resin had a volume of 12 mm(3) in all groups, the material was inserted and polymerized by two different methods: pulse delay (100 mW/cm(2) for 5 s, 40 s interval, 600 mW/cm(2) for 20 s) and continuous pulse (600 mW/cm(2) for 20 s). Each configuration was light cured with both techniques. Tensions generated during polymerization were recorded by 120 s. The values were expressed in curves (Force(N) x Time(s)) and averages compared by statistical analysis (ANOVA and Tukey's test, p<0.05). Results: For the 2x2 and 3x2 bases, with a reduced C-Factor, significant differences were found between the light curing methods. For 6x2 base, with high C-Factor, the light curing method did not influence the contraction forces of the composite resin. Conclusions: Pulse delay technique can determine less stress on tooth/restoration interface of adhesive restorations only when a reduced C-Factor is present.
Resumo:
Sugarcane bagasse cellulose was subjected to the extremely low acid (ELA) hydrolysis in 0.07% H2SO4 at 190, 210 and 225 degrees C for various times. The cellulose residues from this process were characterized by TGA, XRD, GPC, FIR and SEM. A kinetic study of thermal decomposition of the residues was also carried out, using the ASTM and Kissinger methods. The thermal studies revealed that residues of cellulose hydrolyzed at 190, 210 and 225 degrees C for 80,40 and 8 min have initial decomposition temperature and activation energy for the main decomposition step similar to those of Avicel PH-101. XRD studies confirmed this finding by showing that these cellulose residues are similar to Avicel in crystallinity index and crystallite size in relation to the 110 and 200 planes. FTIR spectra revealed no significant changes in the cellulose chemical structure and analysis of SEM micrographs demonstrated that the particle size of the cellulose residues hydrolyzed at 190 and 210 degrees C were similar to that of Avicel. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Purpose: To evaluate the effect of mechanical cycling and cementation strategies on the push-out bond strength between fiber posts and root dentin and the polymerization stresses produced using three resin cements. Materials and Methods: Eighty bovine mandibular teeth were sectioned to a length of 16 mm, prepared to 12 mm, and embedded in self-curing acrylic resin. The specimens were then distributed into 8 groups (n = 10): Gr1 - Scotchbond Multi Purpose + RelyX ARC; Gr2 - Scotchbond Multi Purpose + RelyX ARC + mechanical cycling; Gr3 - AdheSE + Multilink Automix; Gr4 - AdheSE + Multilink Automix + mechanical cycling; Gr5 - phosphoric acid + RelyX U100 (self-adhesive cement); Gr6 - phosphoric acid+ RelyX U100 + mechanical cycling; Gr7 - RelyX U100; Gr8 - RelyX U100 + mechanical cycling. The values obtained from the push-out bond strength test were submitted to two-way ANOVA and Tukey's test (p = 0.05), while the values obtained from the polymerization stress test were subjected to one-way ANOVA and Tukey's test (alpha = 0.05). Results: Mechanical cycling did not affect the bond strength values (p = 0.236), while cementation strategies affected the push-out bond strength (p < 0.001). Luting with RelyX U100 and Scotch Bond Multi Purpose + RelyX ARC yielded higher push-out bond strength values. The polymerization stress results were affected by the factor "cement" (p = 0.0104): the self-adhesive cement RelyX U100 exhibited the lowest values, RelyX ARC resulted in the highest values, while Multi link Automix presented values statistically similar to the other two cements. Conclusion: The self-adhesive cement appears to be a good alternative for luting fiber posts due to the high push-out bond strengths and lower polymerization stress values.
Resumo:
In order to investigate the climate variability in the northern Antarctic Peninsula region, this paper focuses on the relationship between stable isotope content of precipitation and firn, and main meteorological variables (air temperature, relative humidity, sea surface temperature, and sea ice extent). Between 2008 and 2010, we collected precipitation samples and retrieved firn cores from several key sites in this region. We conclude that the deuterium excess oscillation represents a robust indicator of the meteorological variability on a seasonal to sub-seasonal scale. Low absolute deuterium excess values and the synchronous variation of both deuterium excess and air temperature imply that the evaporation of moisture occurs in the adjacent Southern Ocean. The delta O-18-air temperature relationship is complicated and significant only at a (multi)seasonal scale. Backward trajectory calculations show that air-parcels arriving at the region during precipitation events predominantly originate at the South Pacific Ocean and Bellingshausen Sea. These investigations will be used as a calibration for ongoing and future research in the area, suggesting that appropriate locations for future ice core research are located above 600 m a.s.l. We selected the Plateau Laclavere, Antarctic Peninsula as the most promising site for a deeper drilling campaign.
Resumo:
Catalysts containing 10%Co supported on CexZr1-xO2 (0 < x < 1) were applied to ethanol steam reforming reactions. The catalysts were characterized by Raman spectroscopy, XANES-H-2 and DRS-UV-Vis. The catalytic tests were conducted at 673, 773 and 873 K, with molar ratios of H2O:ethanol = 3:1. The ethanol conversion and H-2 selectivity were temperature dependent and the association of CeO2 with ZrO2 in the support led to show a low formation of CO, due to the higher mobility of oxygen. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
In this analysis a 3.5 years data set of aerosol and precipitation chemistry, obtained in a remote site in Central Amazonia (Balbina, (1A degrees 55' S, 59A degrees 29' W, 174 m a.s.l.), about 200 km north of Manaus) is discussed. Aerosols were sampled using stacked filter units (SFU), which separate fine (d < 2.5 mu m) and coarse mode (2.5 mu m < d < 10.0 mu m) aerosol particles. Filters were analyzed for particulate mass (PM), Equivalent Black Carbon (BCE) and elemental composition by Particle Induced X-Ray Emission (PIXE). Rainwater samples were collected using a wet-only sampler and samples were analyzed for pH and ionic composition, which was determined using ionic chromatography (IC). Natural sources dominated the aerosol mass during the wet season, when it was predominantly of natural biogenic origin mostly in the coarse mode, which comprised up to 81% of PM10. Biogenic aerosol from both primary emissions and secondary organic aerosol dominates the fine mode in the wet season, with very low concentrations (average 2.2 mu g m(-3)). Soil dust was responsible for a minor fraction of the aerosol mass (less than 17%). Sudden increases in the concentration of elements as Al, Ti and Fe were also observed, both in fine and coarse mode (mostly during the April-may months), which we attribute to episodes of Saharan dust transport. During the dry periods, a significant contribution to the fine aerosols loading was observed, due to the large-scale transport of smoke from biomass burning in other portions of the Amazon basin. This contribution is associated with the enhancement of the concentration of S, K, Zn and BCE. Chlorine, which is commonly associated to sea salt and also to biomass burning emissions, presented higher concentration not only during the dry season but also for the April-June months, due to the establishment of more favorable meteorological conditions to the transport of Atlantic air masses to Central Amazonia. The chemical composition of rainwater was similar to those ones observed in other remote sites in tropical forests. The volume-weighted mean (VWM) pH was 4.90. The most important contribution to acidity was from weak organic acids. The organic acidity was predominantly associated with the presence of acetic acid instead of formic acid, which is more often observed in pristine tropical areas. Wet deposition rates for major species did not differ significantly between dry and wet season, except for NH4+, citrate and acetate, which had smaller deposition rates during dry season. While biomass burning emissions were clearly identified in the aerosol component, it did not present a clear signature in rainwater. The biogenic component and the long-range transport of sea salt were observed both in aerosols and rainwater composition. The results shown here indicate that in Central Amazonia it is still possible to observe quite pristine atmospheric conditions, relatively free of anthropogenic influences.
Resumo:
The RegCM3 (Regional Climate Model-version 3) was nested in HadAM3 model to simulate present (1975-1989, referred hereafter as RegHad) and two future climate scenarios (A2 and B2 from 2071 to 2085, referred as RegA2 and RegB2) over the South America (SA) and South Atlantic Ocean (SAO). Projected changes in the air temperature, precipitation, low level circulation and cyclogenesis climatology were investigated. The cyclogenesis were identified using an automatic scheme for tracking based on the minimum of relative vorticity (zeta) from 10-m height wind. During summer, a general decrease (increase) in the precipitation is projected by RegA2 and RegB2 over the northeastern SA (center-west and south Brazil, north Argentina and Uruguay). For winter, an anomalous low level anticyclonic circulation is associated with the reduction in the rainfall over the central part of southern Brazil in RegA2 and RegB2 scenarios. Similar to HadAM3, RegCM3 projects larger warming in A2 scenario. For the present climate, when compared to HadAM3, RegHad defines better both the location of the main cyclogenetic areas and its annual cycle near southwestern SAO. The projections indicate a reduction in the total number of cyclones of -7.2% and -4.7% for RegA2 and RegB2, respectively, while HadAM3 reduction is -4.5% for both scenarios. The decrease is larger for initially intense cyclones (zeta <=-<= 2.5 x 10(-5) s-(1)): -20.9% (RegA2) and -11.3% (RegB2). For the lifetime, distance traveled and mean velocity of the cyclones, the A2 and B2 scenarios present mean values close to the present climate ( 3 days, 1900 km, and 9 m s(-1), respectively). Regarding the initial mean vorticity of the systems, RegB2 simulates values similar to the present climate, but they are initially weaker in RegA2. In general, RegA2 and RegB2 show a large decrease in the number of cyclones over the southern SAO due to an anticyclonic anomaly covering SAO between 30-55A degrees S. The reduction is larger in the scenario with higher concentrations of greenhouse gases (RegA2).
Resumo:
Nanoplasmonics and metamaterials sciences are rapidly growing due to their contributions to photonic devices fabrication with applications ranging from biomedicine to photovoltaic cells. Noble metal nanoparticles incorporated into polymer matrix have great potential for such applications due to their distinctive optical properties. However, methods to indirectly incorporate metal nanoparticles into polymeric microstructures are still on demand. Here we report on the fabrication of two-photon polymerized microstructures doped with gold nanoparticles through an indirect doping process, so they do not interfere in the two-photon polymerization (2PP) process. Such microstructures present a strong emission, arising from gold nanoparticles fluorescence. The microstructures produced are potential candidates for nanoplasmonics and metamaterials devices applications and the nanoparticles production method can be applied in many samples, heated simultaneously, opening the possibility for large scale processes. (C) 2012 Optical Society of America
Resumo:
Monomers based on plant oil derivatives bearing furan heterocycles appended through thiol-ene click chemistry were prepared and, subsequently, polymerized via a second type of click reaction, i. e. the Diels-Alder (DA) polycondensation between furan and maleimide complementary moieties. Two basic approaches were considered for these DA polymerizations, namely (i) the use of monomers with two terminal furan rings in conjunction with bismaleimides (AA + BB systems) and (ii) the use of a protected AB monomer incorporating both furan and maleimide end groups. This study clearly showed that both strategies were successful, albeit with different outcomes, in terms of the nature of the ensuing products. The application of the retro-DA reaction to these polymers confirmed their thermoreversible character, i. e. the clean-cut return to their respective starting monomers, opening the way to original macromolecular materials with interesting applications, like mendability and recyclability.
Resumo:
Stable carbon isotopic fractionation during calcium carbonate precipitation induced by urease-catalysed hydrolysis of urea was experimentally investigated in artificial water at a constant temperature of 30 degrees C. Carbon isotope fractionation during urea hydrolysis follows a Rayleigh distillation trend characterized by a C-13-enrichment factor of -20 to -22 parts per thousand. CaCO3 precipitate is up to 17.9 parts per thousand C-13-depleted relative to the urea substrate (-48.9 +/- 0.07 parts per thousand). Initial CaCO3 precipitate forms close to isotopic equilibrium with dissolved inorganic carbon. Subsequent precipitation occurs at -2 to -3 parts per thousand offset from isotopic equilibrium, suggesting that the initial delta C-13 value of CaCO3 is reset through dissolution followed by reprecipitation with urease molecules playing a role in offsetting the delta C-13 value of CaCO3 from isotopic equilibrium. Potentially, this isotopic systematics may provide a tool for the diagnosis of ureolytically-formed carbonate cements used as sealing agent. Moreover, it may serve as a basis to develop a carbon isotope tool for the quantification of ureolytically-induced CO2 sequestration. Finally, it suggests carbon isotope disequilibrium as a hallmark of past enzymatic activity in ancient microbial carbonate formation. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Fabrication of microstructures containing active compounds, such as fluorescent dyes and nanoparticles have been exploited in the last few years, aiming at applications from photonics to biology. Here we fabricate, using two-photon polymerization, microstructures containing the fluorescent dyes Stilbene 420, Disodium Fluorescein and Rhodamine B. The produced microstructures, containing dyes at specific sites, present good structural integrity and a broad fluorescence spectrum, from about 350 nm until 700 nm. Such spectrum can be tuned by using different excitation wavelengths and selecting the excitation position in the microstructure. These results are interesting for designing multi-doped structures, presenting tunable and broad fluorescence spectrum. (C)2012 Optical Society of America