20 resultados para PERIPHERAL NEUROPATHIC PAIN
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Backgroud: It has been shown that different symptoms or symptom combinations of neuropathic pain (NeP) may correspond to different mechanistic backgrounds and respond differently to treatment. The Neuropathic Pain Symptom Inventory (NPSI) is able to detect distinct clusters of symptoms (i.e. dimensions) with a putative common mechanistic background. The present study described the psychometric validation of the Portuguese version (PV) of the NPSI. Methods: Patients were seen in two consecutive visits, three to four weeks apart. They were asked to: (i) rate their mean pain intensity in the last 24 hours on an 11-point (0-10) numerical scale; (ii) complete the PV-NPSI; (iii) provide the list of pain medications and doses currently in use. VAS and Global Impression of Change (GIC) were filled out in the second visit. Results: PV-NPSI underwent test-retest reliability, factor analysis, analysis of sensitivity to changes between both visits. The PV-NPSI was reliable in this setting, with a good intra-class correlation for all items. The factorial analysis showed that the PV-NPSI inventory assessed different components of neuropathic pain. Five different factors were found. The PV-NPSI was adequate to evaluate patients with neuropathic pain and to detect clusters of NeP symptoms. Conclusions: The psychometric properties of the PV-NPSI rendered it adequate to evaluate patients with both central and peripheral neuropathic pain syndromes and to detect clusters of NeP symptoms.
Resumo:
Crotalphine, a 14 amino acid peptide first isolated from the venom of the South American rattlesnake Crotalus durissus terrificus, induces a peripheral long-lasting and opioid receptor-mediated antinociceptive effect in a rat model of neuropathic pain induced by chronic constriction of the sciatic nerve. In the present study, we further characterized the molecular mechanisms involved in this effect, determining the type of opioid receptor responsible for this effect and the involvement of the nitric oxide-cyclic GMP pathway and of K+ channels. Crotalphine (0.2 or 5 mu g/kg, orally; 0.0006 mu g/paw), administered on day 14 after nerve constriction, inhibited mechanical hyperalgesia and low-threshold mechanical allodynia. The effect of the peptide was antagonized by intraplantar administration of naltrindole, an antagonist of delta-opioid receptors, and partially reversed by norbinaltorphimine, an antagonist of kappa-opioid receptors. The effect of crotalphine was also blocked by 7-nitroindazole, an inhibitor of the neuronal nitric oxide synthase; by 1H-(1,2,4) oxadiazolo[4,3-a]quinoxaline-1-one, an inhibitor of guanylate cyclase activation; and by glibenclamide, an ATP-sensitive K+ channel blocker. The results suggest that peripheral delta-opioid and kappa-opioid receptors, the nitric oxide-cyclic GMP pathway, and ATP-sensitive K+ channels are involved in the antinociceptive effect of crotalphine. The present data point to the therapeutic potential of this peptide for the treatment of chronic neuropathic pain. Behavioural Pharmacology 23:14-24 (C) 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins.
Resumo:
Aim: This study evaluates the contribution of inhibitory pain pathways that descend to the spinal cord through the dorsolateral funiculus (DLF) on the effect of intrathecal gabapentin against spinal nerve ligation (SNL)-induced behavioral hypersensitivity to mechanical stimulation in rats. Main method: Rats were submitted to a sham or complete ligation of the right LS and L6 spinal nerves and a sham or complete DLF lesion. Next, the changes induced by intrathecal administration of gabapentin on the paw withdrawal threshold of rats to mechanical stimulation were evaluated electronically. Key findings: Intrathecal gabapentin (200 mu g/5 mu l) that was injected 2 or 7 days after surgery fully inhibited the SNL-induced behavioral hypersensitivity to mechanical stimulation in sham DLF-Iesioned rats; gabapentin was effective against the SNL-induced behavioral hypersensitivity to mechanical stimulation also in DLF-Iesioned rats. Significance: The effect of intrathecally administered gabapentin against SNL-induced behavioral hypersensitivity to mechanical stimulation in rats does not depend on the activation of nerve fibers that descend to the spinal cord via the DLF. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Background: The neural mobilization technique is a noninvasive method that has proved clinically effective in reducing pain sensitivity and consequently in improving quality of life after neuropathic pain. The present study examined the effects of neural mobilization (NM) on pain sensitivity induced by chronic constriction injury (CCI) in rats. The CCI was performed on adult male rats, submitted thereafter to 10 sessions of NM, each other day, starting 14 days after the CCI injury. Over the treatment period, animals were evaluated for nociception using behavioral tests, such as tests for allodynia and thermal and mechanical hyperalgesia. At the end of the sessions, the dorsal root ganglion (DRG) and spinal cord were analyzed using immunohistochemistry and Western blot assays for neural growth factor (NGF) and glial fibrillary acidic protein (GFAP). Results: The NM treatment induced an early reduction (from the second session) of the hyperalgesia and allodynia in CCI-injured rats, which persisted until the end of the treatment. On the other hand, only after the 4th session we observed a blockade of thermal sensitivity. Regarding cellular changes, we observed a decrease of GFAP and NGF expression after NM in the ipsilateral DRG (68% and 111%, respectively) and the decrease of only GFAP expression after NM in the lumbar spinal cord (L3-L6) (108%). Conclusions: These data provide evidence that NM treatment reverses pain symptoms in CCI-injured rats and suggest the involvement of glial cells and NGF in such an effect.
Resumo:
Background Conventional protocols of high-frequency repetitive transcranial magnetic stimulation (rTMS) delivered to M1 can produce analgesia. Theta burst stimulation (TBS), a novel rTMS paradigm, is thought to produce greater changes in M1 excitability than conventional protocols. After a preliminary experiment showing no analgesic effect of continuous or intermittent TBS trains (cTBS or iTBS) delivered to M1 as single procedures, we used TBS to prime a subsequent session of conventional 10?Hz-rTMS. Methods In 14 patients with chronic refractory neuropathic pain, navigated rTMS was targeted over M1 hand region, contralateral to painful side. Analgesic effects were daily assessed on a visual analogue scale for the week after each 10?Hz-rTMS session, preceded or not by TBS priming. In an additional experiment, the effects on cortical excitability parameters provided by single- and paired-pulse TMS paradigms were studied. Results Pain level was reduced after any type of rTMS procedure compared to baseline, but iTBS priming produced greater analgesia than the other protocols. Regarding motor cortex excitability changes, the analgesic effects were associated with an increase in intracortical inhibition, whatever the type of stimulation, primed or non-primed. Conclusions The present results show that the analgesic effects of conventional 10?Hz-rTMS delivered to M1 can be enhanced by TBS priming, at least using iTBS. Interestingly, the application of cTBS and iTBS did not produce opposite modulations, unlike previously reported in other systems. It remains to be determined whether the interest of TBS priming is to generate a simple additive effect or a more specific process of cortical plasticity.
Resumo:
Background: Pain markedly activates the hypothalamic-pituitary-adrenal (HPA) axis and increases plasma corticosterone release interfering significantly with nociceptive behaviour as well as the mechanism of action of analgesic drugs. Aims/Methods: In the present study, we monitored the time course of circulating corticosterone in two mouse strains (C57Bl/6 and Balb/C) under different pain models. In addition, the stress response was investigated following animal handling, intrathecal (i.t.) manipulation and habituation to environmental conditions commonly used in nociceptive experimental assays. We also examined the influence of within-cage order of testing on plasma corticosterone. Results: Subcutaneous injection of capsaicin precipitated a prompt stress response whereas carrageenan and complete Freund's adjuvant induced an increased corticosterone release around the third hour post-injection. However, carrageenan induced a longer increased corticosterone in C57Bl/6 mice. In partial sciatic nerve ligation, neuropathic pain model corticosterone increased only in the first days whereas mechanical hypersensitivity remained much longer. Animal handling also represents an important stressor whereas the i.t. injection per se does not exacerbate the handling-induced stress response. Moreover, the order of testing animals from the same cage does not interfere with plasma corticosterone levels in the intrathecal procedure. Animal habituation to the testing apparatus also does not reduce the immediate corticosterone increase as compared with non-habituated mice. Conclusion: Our data indicate that HPA axis activation in acute and chronic pain models is time dependent and may be dissociated from evoked hyperalgesia. Therefore, HPA-axis activation represents an important variable to be considered when designing experimental assays of persistent pain as well as for interpretation of data.
Resumo:
The acetic acid and phenyl-p-benzoquinone are easy and fast screening models to access the activity of novel candidates as analgesic drugs and their mechanisms. These models induce a characteristic and quantifiable overt pain-like behavior described as writhing response or abdominal contortions. The knowledge of the mechanisms involved in the chosen model is a crucial step forward demonstrating the mechanisms that the candidate drug would inhibit because the mechanisms triggered in that model will be addressed. Herein, it was investigated the role of spinal mitogen-activated protein (MAP) kinases ERK (extracellular signal-regulated kinase), JNK (Jun N-terminal Kinase) and p38, PI3K (phosphatidylinositol 3-kinase) and microglia in the writhing response induced by acetic acid and phenyl-p-benzoquinone, and flinch induced by formalin in mice. Acetic acid and phenyl-p-benzoquinone induced significant writhing response over 20 min. The nociceptive response in these models were significantly and in a dose-dependent manner reduced by intrathecal pre-treatment with ERK (PD98059), JNK (SB600125), p38 (SB202190) or PI3K (wortmannin) inhibitors. Furthermore, the co-treatment with MAP kinase and PI3K inhibitors, at doses that were ineffective as single treatment, significantly inhibited acetic acid- and phenyl-p-benzoquinone-induced nociception. The treatment with microglia inhibitors minocycline and fluorocitrate also diminished the nociceptive response. Similar results were obtained in the formalin test. Concluding. MAP kinases and PI3K are important spinal signaling kinases in acetic acid and phenyl-p-benzoquinone models of overt pain-like behavior and there is also activation of spinal microglia indicating that it is also important to determine whether drugs tested in these models also modulate such spinal mechanisms. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
The mechanisms through which electro-acupuncture (EA) and tricyclic antidepressants produce analgesia seem to be complementary: EA inhibits the transmission of noxious messages by activating supraspinal serotonergic and noradrenergic neurons that project to the spinal cord, whereas tricyclic antidepressants affect pain transmission by inhibiting the reuptake of norepinephrine and serotonin at the spinal level. This study utilized the tail-flick test and a model of post-incision pain to compare the antihyperalgesic effects of EA at frequencies of 2 or 100 Hz in rats treated with intraperitoneal or intrathecal amitriptyline (a tricyclic antidepressant). A gradual increase in the tail-flick latency (TFL) occurred during a 20-min period of EA. A strong and long-lasting reduction in post-incision hyperalgesia was observed after stimulation; the effect after 2 Hz lasting longer than after 100-Hz EA. Intraperitoneal or intrathecal amitriptyline potentiated the increase in TFL in the early moments of 2- or 100-Hz EA, and the intensity of the antihyperalgesic effect of 100-Hz EA in both the incised and non-incised paw. In contrast, it did not significantly change the intensity of the antihyperalgesic effect of 2-Hz EA. The EA-induced antihyperalgesic effects lasted longer after intraperitoneal or intrathecal amitriptyline than after saline, with this effect of amitriptyline being more evident after 100-than after 2-Hz EA. The synergetic effect of amitriptyline and EA against post-incision pain shown here may therefore represent an alternative for prolonging the efficacy of EA in the management of post-surgical clinical pain.
Resumo:
Background: Central post-stroke pain (CPSP) is a neuropathic pain syndrome associated with somatosensory abnormalities due to central nervous system lesion following a cerebrovascular insult. Post-stroke pain (PSP) refers to a broader range of clinical conditions leading to pain after stroke, but not restricted to CPSP, including other types of pain such as myofascial pain syndrome (MPS), painful shoulder, lumbar and dorsal pain, complex regional pain syndrome, and spasticity-related pain. Despite its recognition as part of the general PSP diagnostic possibilities, the prevalence of MPS has never been characterized in patients with CPSP patients. We performed a cross-sectional standardized clinical and radiological evaluation of patients with definite CPSP in order to assess the presence of other non-neuropathic pain syndromes, and in particular, the role of myofascial pain syndrome in these patients. Methods: CPSP patients underwent a standardized sensory and motor neurological evaluation, and were classified according to stroke mechanism, neurological deficits, presence and profile of MPS. The Visual Analogic Scale (VAS), McGill Pain Questionnaire (MPQ), and Beck Depression Scale (BDS) were filled out by all participants. Results: Forty CPSP patients were included. Thirty-six (90.0%) had one single ischemic stroke. Pain presented during the first three months after stroke in 75.0%. Median pain intensity was 10 (5 to 10). There was no difference in pain intensity among the different lesion site groups. Neuropathic pain was continuous-ongoing in 34 (85.0%) patients and intermittent in the remainder. Burning was the most common descriptor (70%). Main aggravating factors were contact to cold (62.5%). Thermo-sensory abnormalities were universal. MPS was diagnosed in 27 (67.5%) patients and was more common in the supratentorial extra-thalamic group (P <0.001). No significant differences were observed among the different stroke location groups and pain questionnaires and scales scores. Importantly, CPSP patients with and without MPS did not differ in pain intensity (VAS), MPQ or BDS scores. Conclusions: The presence of MPS is not an exception after stroke and may present in association with CPSP as a common comorbid condition. Further studies are necessary to clarify the role of MPS in CPSP.
Resumo:
Motor cortex stimulation is generally suggested as a therapy for patients with chronic and refractory neuropathic pain. However, the mechanisms underlying its analgesic effects are still unknown. In a previous study, we demonstrated that cortical stimulation increases the nociceptive threshold of naive conscious rats with opioid participation. In the present study, we investigated the neurocircuitry involved during the antinociception induced by transdural stimulation of motor cortex in naive rats considering that little is known about the relation between motor cortex and analgesia. The neuronal activation patterns were evaluated in the thalamic nuclei and midbrain periaqueductal gray. Neuronal inactivation in response to motor cortex stimulation was detected in thalamic sites both in terms of immunolabeling (Zif268/Fos) and in the neuronal firing rates in ventral posterolateral nuclei and centromedian-parafascicular thalamic complex. This effect was particularly visible for neurons responsive to nociceptive peripheral stimulation. Furthermore, motor cortex stimulation enhanced neuronal firing rate and Fos immunoreactivity in the ipsilateral periaqueductal gray. We have also observed a decreased Zif268, delta-aminobutyric acid (GABA), and glutamic acid decarboxylase expression within the same region, suggesting an inhibition of GABAergic interneurons of the midbrain periaqueductal gray, consequently activating neurons responsible for the descending pain inhibitory control system. Taken together, the present findings suggest that inhibition of thalamic sensory neurons and disinhibition of the neurons in periaqueductal gray are at least in part responsible for the motor cortex stimulation-induced antinociception. (C) 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Resumo:
Abstract Background Chikungunya virus (CHIKV) is responsible for major epidemics worldwide. Autochthonous cases were recently reported in several European countries. Acute infection is thought to be monophasic. However reports on chronic pain related to CHIKV infection have been made. In particular, the fact that many of these patients do not respond well to usual analgesics suggests that the nature of chronic pain may be not only nociceptive but also neuropathic. Neuropathic pain syndromes require specific treatment and the identification of neuropathic characteristics (NC) in a pain syndrome is a major step towards pain control. Methods We carried out a cross-sectional study at the end of the major two-wave outbreak lasting 17 months in Réunion Island. We assessed pain in 106 patients seeking general practitioners with confirmed infection with the CHIK virus, and evaluated its impact on quality of life (QoL). Results The mean intensity of pain on the visual-analogical scale (VAS) was 5.8 ± 2.1, and its mean duration was 89 ± 2 days. Fifty-six patients fulfilled the definition of chronic pain. Pain had NC in 18.9% according to the DN4 questionnaire. Conversely, about two thirds (65%) of patients with NC had chronic pain. The average pain intensity was similar between patients with or without NC (6.0 ± 1.7 vs 6.1 ± 2.0). However, the total score of the Short Form-McGill Pain Questionnaire (SF-MPQ)(15.5 ± 5.2 vs 11.6 ± 5.2; p < 0.01) and both the affective (18.8 ± 6.2 vs 13.4 ± 6.7; p < 0.01) and sensory subscores (34.3 ± 10.7 vs 25.0 ± 9.9; p < 0.01) were significantly higher in patients with NC. The mean pain interference in life activities calculated from the Brief Pain Inventory (BPI) was significantly higher in patients with chronic pain than in patients without it (6.8 ± 1.9 vs 5.9 ± 1.9, p < 0.05). This score was also significantly higher in patients with NC than in those without such a feature (7.2 ± 1.5 vs 6.1 ± 1.9, p < 0.05). Conclusions There exists a specific chronic pain condition associated to CHIKV. Pain with NC seems to be associated with more aggressive clinical picture, more intense impact in QoL and more challenging pharmacological treatment.
Resumo:
This study describes the enantioselective analysis of unbound and total concentrations of tramadol and its main metabolites O-desmethyltramadol (M1) and N-desmethyltramadol (M2) in human plasma. Sample preparation was preceded by an ultrafiltration step to separate the unbound drug. Both the ultrafiltrate and plasma samples were submitted to liquid/liquid extraction with methyl t-butyl ether. Separation was performed on a Chiralpak (R) AD column and tandem mass spectrometry consisting of an electrospray ionization source, positive ion mode and multiple reaction monitoring was used as the detection system. Linearity was observed in the following ranges: 0.2-600 and 0.5-250 ng/mL for analysis of total and unbound concentrations of the tramadol enantiomers, respectively, and 0.1-300 and 0.25-125 ng/mL for total and unbound concentrations of the M1 and M2 enantiomers, respectively. The lower limits of quantitation were 0.2 and 0.5 ng/mL for analysis of total and unbound concentration of each tramadol enantiomer, respectively, and 0.1 and 0.25 ng/mL for total and unbound concentrations of M1 and M2 enantiomers, respectively. Intra- and interassay reproducibility and inaccuracy did not exceed 15%. Clinical application of the method to patients with neuropathic pain showed plasma accumulation of (+)-tramadol and (+)-M2 after a single oral dose of racemic tramadol. Fractions unbound of tramadol, M1 or M2 were not enantioselective in the patients investigated. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Objective: Based on evidence showing that electrical stimulation of the nervous system is an effective method to decrease chronic neurogenic pain, we aimed to investigate whether the combination of 2 methods of electrical stimulation-a method of peripheral stimulation [transcutaneous electrical nerve stimulation (TENS)] and a method of noninvasive brain stimulation (transcranial direct current stimulation (tDCS)]-induces greater pain reduction as compared with tDCS alone and sham stimulation. Methods: We performed a preliminary, randomized, sham-controlled, crossover, clinical study in which 8 patients were randomized to receive active tDCS/active TENS (""tDCS/TENS"" group), active tDCS/sham TENS (""tDCS"" group), and sham tDCS/sham TENS (""sham"" group) stimulation. Assessments were performed immediately before and after each condition by a blinded rater. Results: The results showed that there was a significant difference in pain reduction across the conditions Of stimulation (P = 0.006). Post hoc tests showed significant pain reduction as compared with baseline after the tDCS/TENS condition [reduction by 36.5% (+/- 10.7), P = 0.004] and the tDCS condition [reduction by 15.5% (+/- 4.9), P = 0.014], but not after sham stimulation (P = 0.35). In addition, tDCS/TENS induced greater pain reduction than tDCS (P = 0.02). Conclusions: The results of this pilot study suggest that the combination of TENS with tDCS has a superior effect compared with tDCS alone.
Resumo:
Study Objective: To estimate the concentration of natural killer (NK) cells in the peripheral blood in patients with and without endometriosis. Design: Case-control study (Canadian Task Force classification II-2). Setting: Tertiary referral hospital. Patients: One hundred fifty-five patients who had undergone videolaparoscopy were divided into 2 groups: those with endometriosis (n = 100) and those without endometriosis (n = 55). Interventions: The percentage of NK cells relative to peripheral lymphocytes was quantified at flow cytometry in 155 patients who had undergone laparoscopy. In addition to verifying the presence of endometriosis, stage of disease and the sites affected were also evaluated. Measurements and Main Results: The mean (SD) percentage of NK cells was higher (15.3% [9.8%]) in patients with endometriosis than in the group without the disease (10.6% [5.8%]) (p < .001). The percentage of NK cells was highest (19.8 [10.3%]) in patients with advanced stages of endometriosis and in those in whom the rectosigmoid colon was affected. In a statistical model of probability, the association of this marker (NK cells >= 11%) with the presence of symptoms such as pain and intestinal bleeding during menstruation and the absence of previous pregnancy yielded a 78% likelihood of the rectosigmoid colon being affected. Conclusion: Compared with patients without endometriosis, those with endometriosis demonstrate a higher concentration of peripheral NK cells. The percentage of NK cells is greater, primarily in patients with advanced stages of endometriosis involving the rectosigmoid colon. Therefore, it may serve as a diagnostic marker for this type of severe endometriosis, in particular if considered in conjunction with the symptoms. Journal of Minimally Invasive Gynecology (2012) 19, 317-324 (C) 2012 AAGL. All rights reserved.
Resumo:
Background: In addition to their central effects, opioids cause peripheral analgesia. There is evidence showing that peripheral activation of kappa opioid receptors (KORs) inhibits inflammatory pain. Moreover, peripheral mu-opioid receptor (MOR) activation are able to direct block PGE(2)-induced ongoing hyperalgesia However, this effect was not tested for KOR selective activation. In the present study, the effect of the peripheral activation of KORs on PGE(2)-induced ongoing hyperalgesia was investigated. The mechanisms involved were also evaluated. Results: Local (paw) administration of U50488 (a selective KOR agonist) directly blocked, PGE(2)-induced mechanical hyperalgesia in both rats and mice. This effect was reversed by treating animals with L-NMMA or N-propyl-L-arginine (a selective inhibitor of neuronal nitric oxide synthase, nNOS), suggesting involvement of the nNOS/NO pathway. U50488 peripheral effect was also dependent on stimulation of PI3K gamma/AKT because inhibitors of these kinases also reduced peripheral antinociception induced by U50488. Furthermore, U50488 lost its peripheral analgesic effect in PI3K gamma null mice. Observations made in vivo were confirmed after incubation of dorsal root ganglion cultured neurons with U50488 produced an increase in the activation of AKT as evaluated by western blot analyses of its phosphorylated form. Finally, immunofluorescence of DRG neurons revealed that KOR-expressing neurons also express PI3K gamma (congruent to 43%). Conclusions: The present study indicates that activation of peripheral KORs directly blocks inflammatory hyperalgesia through stimulation of the nNOS/NO signaling pathway which is probably stimulated by PI3K gamma/AKT signaling. This study extends a previously study of our group suggesting that PI3K gamma/AKT/nNOS/NO is an important analgesic pathway in primary nociceptive neurons.