18 resultados para Organic Production

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study evaluated the effects of the organic loading rate (OLR) and pH buffer addition on hydrogen production in two anaerobic fluidized bed reactors (AFBRs) operated simultaneously. The AFBRs were fed with glucose, and expanded clay was used as support material. The reactors were operated at a temperature of 30 degrees C, without the addition of a buffer (AFBR1) and with the addition of a pH buffer (AFBR2, sodium bicarbonate) for OLRs ranging from 19.0 to 140.6 kg COD m(-3) d(-1) (COD: chemical oxygen demand). The maximum hydrogen yields for AFBR1 and AFBR2 were 2.45 and 1.90 mol H-2 mol(-1) glucose (OLR of 84.3 kg COD m(-3) d(-1)), respectively. The highest hydrogen production rates were 0.95 and 0.76 L h(-1) L-1 for AFBR1 and AFBR2 (OLR of 140.6 kg COD m(-3) d(-1)), respectively. The operating conditions in AFBR1 favored the presence of such bacteria as Clostridium, while the bacteria in AFBR2 included Clostridium, Enterobacter, Klebsiella, Veillonellaceae, Chryseobacterium, Sporolactobacillus, and Burkholderiaceae. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Alternative fuel sources have been extensively studied. Hydrogen gas has gained attention because its combustion releases only water, and it can be produced by microorganisms using organic acids as substrates. The aim of this study was to enrich a microbial consortium of photosynthetic purple non-sulfur bacteria from an Upflow Anaerobic Sludge Blanket reactor (UASB) using malate as carbon source. After the enrichment phase, other carbon sources were tested, such as acetate (30 mmol l(-1)), butyrate (17 mmol l(-1)), citrate (11 mmol l(-1)), lactate (23 mmol l(-1)) and malate (14.5 mmol l(-1)). The reactors were incubated at 30 degrees C under constant illumination by 3 fluorescent lamps (81 mu mol m(-2) s(-1)). The cumulative hydrogen production was 7.8, 9.0, 7.9, 5.6 and 13.9 mmol H-2 l(-1) culture for acetate, butyrate, citrate, lactate and malate, respectively. The maximum hydrogen yield was 0.6, 1.4, 0.7, 0.5 and 0.9 mmol H-2 mmol(-1) substrate for acetate, butyrate, citrate, lactate and malate, respectively. The consumption of substrates was 43% for acetate, 37% for butyrate, 100% for citrate, 49% for lactate and 100% for malate. Approximately 26% of the clones obtained from the Phototrophic Hydrogen-Producing Bacterial Consortium (PHPBC) were similar to Rhodobacter, Rhodospirillum and Rhodopseudomonas, which have been widely cited in studies of photobiological hydrogen production. Clones similar to the genus Sulfurospirillum (29% of the total) were also found in the microbial consortium. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigated the effect of increased glucose oxidase concentration as a technological option to decrease oxidative stress during the processing of probiotic yogurts. Probiotic yogurts were produced with increased concentrations of glucose oxidase (0, 250, 500, 750, or 1,000 mg/kg) and submitted to physicochemical and microbiological analysis at 1, 15, and 30 d of refrigerated storage. Higher concentrations of glucose oxidase (750 and 1,000 mg/kg) and a longer storage time were found to have an influence on the characteristics of the probiotic yogurt, contributing to more extensive post-acidification, an increase in the dissolved oxygen level, and higher proteolysis. In addition, increased production of aroma compounds (diacetyl and acetaldehyde) and organic acids (mainly lactic acid) and a decrease in the probiotic bacteria count were reported. The use of glucose oxidase was a feasible option to minimize oxidative stress in probiotic yogurts. However, supplementation with excessive amounts of the enzyme may be ineffective, because insufficient substrate (glucose) is present for its action. Consumer tests should be performed to evaluate changes in the sensory attributes of the probiotic yogurts with increased supplementation of glucose oxidase. In addition, packaging systems with different permeability to oxygen should be evaluated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study evaluates the potential for using different effluents for simultaneous H-2 and CH4 production in a two-stage batch fermentation process with mixed microflora. An appreciable amount of H-2 was produced from parboiled rice wastewater (23.9 mL g(-1) chemical oxygen demand [COD]) and vinasse (20.8 mL g(-1) COD), while other effluents supported CH4 generation. The amount of CH4 produced was minimum for sewage (46.3 mL g(-1) COD), followed by parboiled rice wastewater (115.5 mL g(-1) COD) and glycerol (180.1 mL g(-1) COD). The maximum amount of CH4 was observed for vinasse (255.4 mL g(-1) COD). The total energy recovery from vinasse (10.4 kJ g(-1) COD) corresponded to the maximum COD reduction (74.7 %), followed by glycerol (70.38 %, 7.20 kJ g(-1) COD), parboiled rice wastewater (63.91 %, 4.92 kJ g(-1) COD), and sewage (51.11 %, 1.85 kJ g(-1) COD). The relatively high performance of vinasse in such comparisons could be attributed to the elevated concentrations of macronutrients contained in raw vinasse. The observations are based on kinetic parameters of H-2 and CH4 production and global energy recovery of the process. These observations collectively suggest that organic-rich effluents can be deployed for energy recovery with sequential generation of H-2 and CH4.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heterotrophic bacterial and phytoplankton biomass, production, specific growth rates, and growth efficiencies were studied in the Northern region of the Cananeia-Iguape estuarine system, which has recently experienced an intense eutrophication due to anthropogenic causes. Two surveys were carried out during spring and neap tide periods of the dry season of 2005 and the rainy season of 2006. This region receives large freshwater inputs with organic seston and phosphate concentrations that reach as high as 1.0 mg l(-1) and 20.0 mu M, respectively. Strong decreasing gradients of seston and dissolved inorganic nutrients were observed from the river/estuary boundary to the estuary/coastal interface. Gradients were also observed in phytoplankton and bacterial production rates. The production rates of phytoplankton were 5.6-fold higher (mean 8.5 mu g Cl(-1) h(-1)) during the dry season. Primary production rates (PP) positively correlated with salinity and euphoric depth, indicating that phytoplankton productivity was light-limited. On the other hand, bacterial biomass (BB) and production rates (BP) were 1.9- and 3.7-fold higher, respectively, during the rainy season, with mean values of up to 40.4 mu g Cl(-1) and 7.9 mu g Cl(-1) h-1, respectively. Despite such a high BP, bacterial abundance remained <2 x 106 cells ml(-1), indicating that bacterial production and removal were coupled. Mean specific growth rates ranged between 0.9 and 5.5 d(-1). BP was inversely correlated with salinity and positively correlated with temperature, organic matter, exopolymer particles, and particulate-attached bacteria; this last accounted for as much as 89.6% of the total abundance. During the rainy season, BP was generally much higher than PP, and values of BP/PP > 20 were registered during high freshwater input, suggesting that under these conditions, bacterial activity was predominantly supported by allochthonous inputs of organic carbon. In addition, BB probably represented the main pathway for the synthesis of high-quality (low C:N) biomass that may have been available to the heterotrophic components of the plankton food web, particularly nanoheterotrophs. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Products based on botanical insecticides and entomopathogenic fungi have been widely used in organic farming, especially in southern Brazil. Thus, this study investigated, in vitro, the effect of aqueous extracts and commercial formulations of plants with insecticidal activity on Beauveria bassiana. The treatments comprised the botanical insecticides Neempro (azadiractin +3-tigloylazadirachtol), at the concentrations of 0.25, 0.5, 0.75, and 1.0% (v/v), and DalNeem (neem oil emulsifiable), at 0.5, 1.0, 1.5, and 2.0% (v/v) (both commercial formulations of Azadirachta indica (neem)), and the aqueous extracts, at the concentrations of 2.5, 5.0, 7.5, and 10.0% (w/v), of neem seeds, tobacco powder (Nicotiana tabacum), and catigua leaves (Trichilia clausenii). In potato, dextrose, and agar culture medium, the effects of each product on the mycelial growth and the production and viability of conidia of B. bassiana were estimated. According to the adopted compatibility index, the aqueous extracts of neem seeds and leaves catigua, depending on the concentration used, and the botanical insecticide Neempro, were classified as compatible with the entomopathogen, becoming important alternatives to integrate programmes of integrated pest management, especially in organic farming systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Development of dairy organic probiotic fermented products is of great interest as they associate ecological practices and benefits of probiotic bacteria. As organic management practices of cow milk production allow modification of the fatty acid composition of milk (as compared to conventional milk), we studied the influence of the type of milk on some characteristics of fermented milks, such as acidification kinetics. bacterial counts and fatty acid content. Conventional and organic probiotic fermented milks were produced using Bifidobacterium animalis subsp. lactis HN019 in co-culture with Streptococcus thermophilus TA040 and Lactobacillus delbrueckii subsp. bulgaricus LB340. The use of organic milk led to a higher acidification rate and cultivability of Lactobacillus bulgaricus. Fatty acids profile of organic fermented milks showed higher amounts of trans-octadecenoic acid (C18:1, 1.6 times) and polyunsaturated fatty acids, including cis-9 trans-11. C18:2 conjugated linoleic (CLA-1.4 times), and alpha-linolenic acids (ALA-1.6 times), as compared to conventional fermented milks. These higher levels were the result of both initial percentage in the milk and increase during acidification, with no further modification during storage. Finally, use of bifidobacteria slightly increased CLA relative content in the conventional fermented milks, after 7 days of storage at 4 degrees C, whereas no difference was seen in organic fermented milks. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work was to investigate the effect of different feeding times (2, 4 and 6 h) and applied volumetric organic loads (4.5, 6.0 and 7.5 gCOD L-1 day(-1)) on the performance of an anaerobic sequencing batch biofilm reactor (AnSBBR) treating effluent from biodiesel production. Polyurethane foam cubes were used as inert support in the reactor, and mixing was accomplished by recirculating the liquid phase. The effect of feeding time on reactor performance showed to be more pronounced at higher values of applied volumetric organic loads (AVOLs). Highest organic material removal efficiencies achieved at AVOL of 4.5 gCOD L-1 day(-1) were 87 % at 4-h feeding against 84 % at 2-h and 6-h feeding. At AVOL of 6.0 gCOD L-1 day(-1), highest organic material removal efficiencies achieved with 4-h and 6-h feeding were 84 %, against 71 % at 2-h feeding. At AVOL of 7.5 gCOD L-1 day(-1), organic material removal efficiency achieved with 4-h feeding was 77 %. Hence, longer feeding times favored minimization of total volatile acids concentration during the cycle as well as in the effluent, guaranteeing process stability and safety.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peatlands form in areas where net primary of organic matter production exceeds losses due to the decomposition, leaching or disturbance. Due to their chemical and physical characteristics, bogs can influence water dynamics because they can store large volumes of water in the rainy season and gradually release this water during the other months of the year. In Diamantina, Minas Gerais, Brazil, a peatland in the environmental protection area of Pau-de-Fruta ensures the water supply of 40,000 inhabitants. The hypothesis of this study is that the peat bogs in Pau-de-Fruta act as an environment for carbon storage and a regulator of water flow in the Corrego das Pedras basin. The objective of this study was to estimate the water volume and organic matter mass in this peatland and to study the influence of this environment on the water flow in the Corrego das Pedras basin. The peatland was mapped using 57 transects, at intervals of 100 m. Along all transects, the depth of the peat bog, the Universal Transverse Mercator (UTM) coordinates and altitude were recorded every 20 m and used to calculate the area and volume of the peatland. The water volume was estimated, using a method developed in this study, and the mass of organic matter based on samples from 106 profiles. The peatland covered 81.7 hectares (ha), and stored 497,767 m(3) of water, representing 83.7 % of the total volume of the peat bog. The total amount of organic matter (OM) was 45,148 t, corresponding to 552 t ha(-1) of OM. The peat bog occupies 11.9 % of the area covered by the Corrego das Pedras basin and stores 77.6 % of the annual water surplus, thus controlling the water flow in the basin and consequently regulating the water course.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As in the case of most small organic molecules, the electro-oxidation of methanol to CO2 is believed to proceed through a so-called dual pathway mechanism. The direct pathway proceeds via reactive intermediates such as formaldehyde or formic acid, whereas the indirect pathway occurs in parallel, and proceeds via the formation of adsorbed carbon monoxide (COad). Despite the extensive literature on the electro-oxidation of methanol, no study to date distinguished the production of CO2 from direct and indirect pathways. Working under, far-from-equilibrium, oscillatory conditions, we were able to decouple, for the first time, the direct and indirect pathways that lead to CO2 during the oscillatory electro-oxidation of methanol on platinum. The CO2 production was followed by differential electrochemical mass spectrometry and the individual contributions of parallel pathways were identified by a combination of experiments and numerical simulations. We believe that our report opens some perspectives, particularly as a methodology to be used to identify the role played by surface modifiers in the relative weight of both pathways-a key issue to the effective development of catalysts for low temperature fuel cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A high-performance liquid chromatographic method using polar organic mode was developed to analyze albendazole (ABZ), albendazole sulfone (ABZSO(2)) and the chiral and active metabolite albendazole sulfoxide (ABZSOX, ricobendazole) that was further applied in stereoselective fungal biotransformation studies. The chromatographic separation was performed on a Chiralpak AS column using acetonitrile:ethanol (97:3, v/v) plus 0.2% triethylamine and 0.2% acetic acid as the mobile phase at a flow rate of 0.5 mL min(-1). The present study employed hollow fiber liquid-phase microextraction as sample preparation. The method showed to be linear over the concentration range of 25-5000 ng mL(-1) for each ABZSOX enantiomer, 200-10,000 ng mL(-1) for ABZ and 50-1000 ng mL(-1) for ABZSO(2) metabolite with correlation coefficient (r)> 0.9934. The mean recoveries for ABZ, rac-ABZSOX and ABZSO(2) were, respectively, 9%, 33% and 20% with relative standard deviation below 10%. Within-day and between-day precision and accuracy assays for these analytes were studied at three concentration levels and were lower than 15%. This study opens the door regarding the possibility of using fungi in obtaining of the active metabolite ricobendazole. Nigrospora sphaerica (Sacc.) E. W. Mason (5567), Pestalotiopsis foedans (VR8), Papulaspora immersa Hotson (SS13) and Mucor rouxii were able to stereoselectively metabolize ABZ into its chiral metabolite. Among them, the fungus Mucor rouxii was the most efficient in the production of (+)-ABZSOX. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three chemical species related to biomass burning, levoglucosan, potassium and water-soluble organic carbon (WSOC), were measured in aerosol samples collected in a rural area on the outskirts of the municipality of Ourinhos (Sao Paulo State, Brazil). This region is representative of the rural interior of the State, where the economy is based on agro-industrial production, and the most important crop is sugar cane. The manual harvesting process requires that the cane be first burned to remove excess foliage, leading to large emissions of particulate materials to the atmosphere. Most of the levoglucosan (68-89%) was present in small particles (<1.5 mu m), and its concentration in total aerosol ranged from 25 to 1186 ng m(-3). The highest values were found at night, when most of the biomass burning occurs. In contrast, WSOC showed no diurnal pattern, with an average concentration of 5.38 +/- 2.97 mu g m(-3) (n = 27). A significant linear correlation between levoglucosan and WSOC (r = 0.54; n = 26; p < 0.0001) confirmed that biomass burning was in fact an important source of WSOC in the study region. A moderate (but significant) linear correlation between levoglucosan and potassium concentrations (r = 0.62; n = 40; p < 0.0001) was indicative of the influence of other sources of potassium in the study region, such as soil resuspension and fertilizers. When only the fine particles (<1.5 pm; typical of biomass burning) were considered, the linear coefficient increased to 0.91 (n = 9). In this case, the average levoglucosan/K+ ratio was 0.24, which may be typical of biomass burning in the study region. This ratio is about 5 times lower than that previously found for Amazon aerosol collected during the day, when flaming combustion prevails. This suggests that the levoglucosan/K+ ratio may be especially helpful for characterization of the type of vegetation burned (such as crops or forest), when biomass-burning is the dominant source of potassium. The relatively high concentrations of WSOC (and inorganic ions) suggest an important influence on the formation of cloud condensation nuclei, which is likely to affect cloud formation and precipitation patterns. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on a new, promising nanotechnological approach for hydrometallurgy based on recyclable, chemically functionalized superparamagnetic nanoparticles. In this process, the metal ions (e.g. Cu2+) are captured by the nanoparticles and confined at the electrode surface by means of an external magnet. Due to the pre-concentration effect the electrodeposition process is greatly improved, yielding the pure metal in a much shorter time in comparison with the conventional electrodeposition process. After the electrolysis, the magnetic nanoparticles are ready to return to the process. The proposed strategy can advantageously be incorporated in hydrometallurgy, reducing the number of steps associated with complexation, organic solvent extraction, metal release and diffusional electroprocessing, leading to a more sustainable technology. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organic agriculture is a sustainable cultivation ecologically, economically and socially. Several researches in organic agriculture have been made from technical perspectives, economic traits or related to ecological aspects. There are practically no investigations into the nature of the technology used in organic agriculture, especially from an ergonomic perspective. From the activity analysis, this study aimed to map the technology used in the production of organic vegetables. Properties producing organic vegetables were selected representing the State of Sao Paulo. It was applied an instrument (questionnaire and semi-structured interview) with their managers and it was made visual records to identify adaptations, innovations and technological demands that simultaneously minimize the workload and the difficulties in performing the tasks and increase work productivity. For some of the technological innovations a digital scanner was used to generate a virtual solid model to facilitate its redesign and virtual prototyping. The main results show that organic farmers have little technology in product form. The main innovations that enable competitive advantage or allow higher labor productivity occur in the form of processes, organization and marketing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peatlands form in areas where net primary of organic matter production exceeds losses due to the decomposition, leaching or disturbance. Due to their chemical and physical characteristics, bogs can influence water dynamics because they can store large volumes of water in the rainy season and gradually release this water during the other months of the year. In Diamantina, Minas Gerais, Brazil, a peatland in the environmental protection area of Pau-de-Fruta ensures the water supply of 40,000 inhabitants. The hypothesis of this study is that the peat bogs in Pau-de-Fruta act as an environment for carbon storage and a regulator of water flow in the Córrego das Pedras basin. The objective of this study was to estimate the water volume and organic matter mass in this peatland and to study the influence of this environment on the water flow in the Córrego das Pedras basin. The peatland was mapped using 57 transects, at intervals of 100 m. Along all transects, the depth of the peat bog, the Universal Transverse Mercator (UTM) coordinates and altitude were recorded every 20 m and used to calculate the area and volume of the peatland. The water volume was estimated, using a method developed in this study, and the mass of organic matter based on samples from 106 profiles. The peatland covered 81.7 hectares (ha), and stored 497,767 m³ of water, representing 83.7 % of the total volume of the peat bog. The total amount of organic matter (OM) was 45,148 t, corresponding to 552 t ha-1 of OM. The peat bog occupies 11.9 % of the area covered by the Córrego das Pedras basin and stores 77.6 % of the annual water surplus, thus controlling the water flow in the basin and consequently regulating the water course.