24 resultados para Orbitofrontal cortex
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
This study aimed to measure, using fMRI, the effect of diazepam on the haemodynamic response to emotional faces. Twelve healthy male volunteers (mean age = 24.83 +/- 3.16 years), were evaluated in a randomized, balanced-order, double-blind, placebo-controlled crossover design. Diazepam (10 mg) or placebo was given 1 h before the neuroimaging acquisition. In a blocked design covert face emotional task, subjects were presented with neutral (A) and aversive (B) (angry or fearful) faces. Participants were also submitted to an explicit emotional face recognition task, and subjective anxiety was evaluated throughout the procedures. Diazepam attenuated the activation of right amygdala and right orbitofrontal cortex and enhanced the activation of right anterior cingulate cortex (ACC) to fearful faces. In contrast, diazepam enhanced the activation of posterior left insula and attenuated the activation of bilateral ACC to angry faces. In the behavioural task, diazepam impaired the recognition of fear in female faces. Under the action of diazepam, volunteers were less anxious at the end of the experimental session. These results suggest that benzodiazepines can differentially modulate brain activation to aversive stimuli, depending on the stimulus features and indicate a role of amygdala and insula in the anxiolytic action of benzodiazepines.
Resumo:
Five percent of the general population has olfactory or gustatory disorders, although most do not complain about it. However, in some cases, these symptoms can be disabling and may affect quality of life. Anosmia was reported as a possible complication following head injury and neurosurgical procedures, particularly after the resection of tumors located in the anterior fossa and the treatment of aneurysms in the anterior circulation. Nonetheless, in all of these situations, olfactory dysfunction could be explained by damage to the peripheral olfactory system. Here, the authors report a case of complete anosmia associated with ageusia following awake resection of a low-grade glioma involving the left temporoinsular region, with no recovery during a follow-up of 3 years. The frontal lobe was not retracted, and the olfactory tract was not visualized during surgery; therefore, postoperative anosmia and ageusia are likely explained by damage to the cortex and central pathways responsible for these senses. The authors suggest that the patient might have had a subclinical right hemianosmia before surgery, which is a common condition. After resection of the central structures critical for smell and taste processing in the left hemisphere, the patient could have finally had bilateral and complete olfactory and gustatory loss. This is the first known report of permanent anosmia and ageusia following glioma surgery. Because these symptoms might have been underestimated, more attention should be devoted to olfaction and taste, especially with regard to possible subclinical preoperative deficit. (http://thejns.org/doi/abs/10.3171/2012.2.JNS111982)
Resumo:
The presence of cognitive impairment is a frequent complaint among elderly individuals in the general population. This study aimed to investigate the relationship between aging-related regional gray matter (rGM) volume changes and cognitive performance in healthy elderly adults. Morphometric magnetic resonance imaging (MRI) measures were acquired in a community-based sample of 170 cognitively-preserved subjects (66 to 75 years). This sample was drawn from the "Sao Paulo Ageing and Health" study, an epidemiological study aimed at investigating the prevalence and risk factors for Alzheimer's disease in a low income region of the city of Sao Paulo. All subjects underwent cognitive testing using a cross-culturally battery validated by the Research Group on Dementia 10/66 as well as the SKT (applied on the day of MRI scanning). Blood genotyping was performed to determine the frequency of the three apolipoprotein E allele variants (APOE epsilon 2/epsilon 3/epsilon 4) in the sample. Voxelwise linear correlation analyses between rGM volumes and cognitive test scores were performed using voxel-based morphometry, including chronological age as covariate. There were significant direct correlations between worse overall cognitive performance and rGM reductions in the right orbitofrontal cortex and parahippocampal gyrus, and also between verbal fluency scores and bilateral parahippocampal gyral volume (p < 0.05, familywise-error corrected for multiple comparisons using small volume correction). When analyses were repeated adding the presence of the APOE epsilon 4 allele as confounding covariate or excluding a minority of APOE epsilon 2 carriers, all findings retained significance. These results indicate that rGM volumes are relevant biomarkers of cognitive deficits in healthy aging individuals, most notably involving temporolimbic regions and the orbitofrontal cortex.
Resumo:
Previous cross-sectional magnetic resonance imaging (MRI) studies of healthy aging in young adults have indicated the presence of significant inverse correlations between age and gray matter volumes, although not homogeneously across all brain regions. However, such cross-sectional studies have important limitations and there is a scarcity of detailed longitudinal MRI studies with repeated measures obtained in the same individuals in order to investigate regional gray matter changes during short periods of time in non-elderly healthy adults. In the present study, 52 healthy young adults aged 18 to 50 years (27 males and 25 females) were followed with repeated MRI acquisitions over approximately 15 months. Gray matter volumes were compared between the two times using voxel-based morphometry, with the prediction that volume changes would be detectable in the frontal lobe, temporal neocortex and hippocampus. Voxel-wise analyses showed significant (P < 0.05, family-wise error corrected) relative volume reductions of gray matter in two small foci located in the right orbitofrontal cortex and left hippocampus. Separate comparisons for males and females showed bilateral gray matter relative reductions in the orbitofrontal cortex over time only in males. We conclude that, in non-elderly healthy adults, subtle gray matter volume alterations are detectable after short periods of time. This underscores the dynamic nature of gray matter changes in the brain during adult life, with regional volume reductions being detectable in brain regions that are relevant to cognitive and emotional processes.
Resumo:
OBJECTIVE: Specific phobia (SP) is characterized by irrational fear associated with avoidance of specific stimuli. In recent years, neuroimaging techniques have been used in an attempt to better understand the neurobiology of anxiety disorders. The objective of this study was to perform a systematic review of articles that used neuroimaging techniques to study SP. METHOD:A literature search was conducted through electronic databases, using the keywords: imaging, neuroimaging, PET, spectroscopy, functional magnetic resonance, structural magnetic resonance, SPECT, MRI, DTI, and tractography, combined with simple phobia and specific phobia. One-hundred fifteen articles were found, of which 38 were selected for the present review. From these, 24 used fMRI, 11 used PET, 1 used SPECT, 2 used structural MRI, and none used spectroscopy. RESULT: The search showed that studies in this area were published recently and that the neuroanatomic substrate of SP has not yet been consolidated. CONCLUSION: In spite of methodological differences among studies, results converge to a greater activation in the insula, anterior cingulate cortex, amygdala, and prefrontal and orbitofrontal cortex of patients exposed to phobia-related situations compared to controls. These findings support the hypotheses of the hyperactivation of a neuroanatomic structural network involved in SP.
Resumo:
Background: Functional neuroimaging studies have shown that specific brain areas are associated with alcohol craving including the dorsolateral prefrontal cortex (DLPFC). We tested whether modulation of DLPFC using transcranial direct current stimulation (tDCS) could alter alcohol craving in patients with alcohol dependence while being exposed to alcohol cues. Methods: We performed a randomized sham-controlled study in which 13 subjects received sham and active bilateral tDCS delivered to DLPFC (anodal left/cathodal right and anodal right/cathodal left). For sham stimulation, the electrodes were placed at the same positions as in active stimulation; however, the stimulator was turned off after 30 s of stimulation. Subjects were presented videos depicting alcohol consumption to increase alcohol craving. Results: Our results showed that both anodal left/cathodal right and anodal right/cathodal left significantly decreased alcohol craving compared to sham stimulation (p < 0.0001). In addition, we found that following treatment, craving could not be further increased by alcohol cues. Conclusions: Our findings showed that tDCS treatment to DLPFC can reduce alcohol craving. These findings extend the results of previous studies using noninvasive brain stimulation to reduce craving in humans. Given the relatively rapid suppressive effect of tDCS and the highly fluctuating nature of alcohol craving, this technique may prove to be a valuable treatment strategy within the clinical setting. (C) 2007 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Inaccurate wiring and synaptic pathology appear to be major hallmarks of schizophrenia. A variety of gene products involved in synaptic neurotransmission and receptor signaling are differentially expressed in brains of schizophrenia patients. However, synaptic pathology may also develop by improper expression of intra- and extra-cellular structural elements weakening synaptic stability. Therefore, we have investigated transcription of these elements in the left superior temporal gyrus of 10 schizophrenia patients and 10 healthy controls by genome-wide microarrays (Illumina). Fourteen up-regulated and 22 downregulated genes encoding structural elements were chosen from the lists of differentially regulated genes for further qRT-PCR analysis. Almost all genes confirmed by this method were downregulated. Their gene products belonged to vesicle-associated proteins, that is, synaptotagmin 6 and syntaxin 12, to cytoskeletal proteins, like myosin 6, pleckstrin, or to proteins of the extracellular matrix, such as collagens, or laminin C3. Our results underline the pivotal roles of structural genes that control formation and stabilization of pre- and post-synaptic elements or influence axon guidance in schizophrenia. The glial origin of collagen or laminin highlights the close interrelationship between neurons and glial cells in establishment and maintenance of synaptic strength and plasticity. It is hypothesized that abnormal expression of these and related genes has a major impact on the pathophysiology of schizophrenia.
Resumo:
Cannabinoid receptor 1 (CB1) agonists usually induce dose-dependent biphasic effects on anxiety-related responses. Low doses induce anxiolytic-like effects, whereas high doses are ineffective or anxiogenic, probably due to activation of Transient Receptor Potential Vanilloid Type 1 (TRPV1) channels. In this study we have investigated this hypothesis by verifying the effects of the CB1/TRPV1 agonist ACEA injected into the prelimbic medial prefrontal cortex (PL) and the participation of endocannabinoids in the anxiolytic-like responses induced by TRPV1 antagonism, using the elevated plus-maze (EPM) and the Vogel conflict test (VCT). Moreover, we verified the expression of these receptors in the PL by double labeling immunofluorescence. ACEA induced anxiolytic-like effect in the intermediate dose, which was attenuated by previous injection of AM251, a CB1 receptor antagonist. The higher and ineffective ACEA dose caused anxiogenic- and anxiolytic-like effects, when injected after AM251 or the TRPV1 antagonist 6-iodonordihydrocapsaicin (6-I-CPS), respectively. Higher dose of 6-I-CPS induced anxiolytic-like effects both in the EPM and the VCT, which were prevented by previous administration of AM251. In addition, immunofluorescence showed that CB1 and TRPV1 receptors are closely located in the PL These results indicate that the endocannabinoid and endovanilloid systems interact in the PL to control anxiety-like behavior. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Background Conventional protocols of high-frequency repetitive transcranial magnetic stimulation (rTMS) delivered to M1 can produce analgesia. Theta burst stimulation (TBS), a novel rTMS paradigm, is thought to produce greater changes in M1 excitability than conventional protocols. After a preliminary experiment showing no analgesic effect of continuous or intermittent TBS trains (cTBS or iTBS) delivered to M1 as single procedures, we used TBS to prime a subsequent session of conventional 10?Hz-rTMS. Methods In 14 patients with chronic refractory neuropathic pain, navigated rTMS was targeted over M1 hand region, contralateral to painful side. Analgesic effects were daily assessed on a visual analogue scale for the week after each 10?Hz-rTMS session, preceded or not by TBS priming. In an additional experiment, the effects on cortical excitability parameters provided by single- and paired-pulse TMS paradigms were studied. Results Pain level was reduced after any type of rTMS procedure compared to baseline, but iTBS priming produced greater analgesia than the other protocols. Regarding motor cortex excitability changes, the analgesic effects were associated with an increase in intracortical inhibition, whatever the type of stimulation, primed or non-primed. Conclusions The present results show that the analgesic effects of conventional 10?Hz-rTMS delivered to M1 can be enhanced by TBS priming, at least using iTBS. Interestingly, the application of cTBS and iTBS did not produce opposite modulations, unlike previously reported in other systems. It remains to be determined whether the interest of TBS priming is to generate a simple additive effect or a more specific process of cortical plasticity.
Resumo:
Background: Reelin is under epigenetic control and has been reported to be decreased in cortical regions in schizophrenia. Methods: To establish if expression of reelin is altered in specific cortical, hippocampal or thalamic regions of schizophrenia patients, we measured gene expression of reelin in a postmortem study of elderly patients with schizophrenia and non-affected controls in both hemispheres differentiating between gray and white matter. We compared cerebral postmortem samples (dorsolateral prefrontal cortex BA9 and BA46, superior temporal cortex BA22, entorhinal cortex BA28, sensoric cortex BA1-3, hippocampus, CA4, mediodorsal nucleus of the thalamus) from 12 schizophrenia patients with 13 normal subjects investigating gene expression of reelin in the gray and white matter of both hemispheres by in situ-hybridization. Results: The left prefrontal area (BA9) of schizophrenia patients revealed a decreased expression of reelin-mRNA of 29.1% in the white (p = 0.022) and 13.6% in the gray matter (p = 0.007) compared to the control group. None of the other regions examined showed any statistically significant differences. Conclusion: Since reelin is responsible for migration and synapse formation, the decreased gene expression of reelin in the left prefrontal area of schizophrenia patients points to neurodevelopmental deficits in neuronal migration and synaptic plasticity. However, our study group was small, and results should be verified using larger samples. Copyright (C) 2012 S. Karger AG, Basel
Resumo:
Serotonin reuptake inhibitors and cognitive-behavior therapy (CBT) are considered first-line treatments for obsessive-compulsive disorder (OCD). However, little is known about their modulatory effects on regional brain morphology in OCD patients. We sought to document structural brain abnormalities in treatment-naive OCD patients and to determine the effects of pharmacological and cognitive-behavioral treatments on regional brain volumes. Treatment-naive patients with OCD (n = 38) underwent structural magnetic resonance imaging scan before and after a 12-week randomized clinical trial with either fluoxetine or group CBT. Matched-healthy controls (n = 36) were also scanned at baseline. Voxel-based morphometry was used to compare regional gray matter (GM) volumes of regions of interest (ROIs) placed in the orbitofrontal, anterior cingulate and temporolimbic cortices, striatum, and thalamus. Treatment-naive OCD patients presented smaller GM volume in the left putamen, bilateral medial orbitofrontal, and left anterior cingulate cortices than did controls (p<0.05, corrected for multiple comparisons). After treatment with either fluoxetine or CBT (n = 26), GM volume abnormalities in the left putamen were no longer detectable relative to controls. ROI-based within-group comparisons revealed that GM volume in the left putamen significantly increased (p<0.012) in fluoxetine-treated patients (n = 13), whereas no significant GM volume changes were observed in CBT-treated patients (n = 13). This study supports the involvement of orbitofronto/cingulo-striatal loops in the pathophysiology of OCD and suggests that fluoxetine and CBT may have distinct neurobiological mechanisms of action. Neuropsychopharmacology (2012) 37, 734-745; doi: 10.1038/npp.2011.250; published online 26 October 2011
Resumo:
Aim: This study examines if injection of cobalt chloride (CoCl2) or antagonists of muscarinic cholinergic (atropine), mu(1)-opioid (naloxonazine) or 5-HT1 serotonergic (methiothepin) receptors into the dorsal or ventral portions of the anterior pretectal nucleus (APtN) alters the antinociceptive effects of stimulating the retrosplenial cortex (RSC) in rats. Main method: Changes in the nociceptive threshold were evaluated using the tail flick or incision pain tests in rats that were electrically stimulated at the RSC after the injection of saline, CoCl2 (1 mM, 0.10 mu L) or antagonists into the dorsal or ventral APtN. Key findings: The injection of CoCl2, naloxonazine (5 mu g/0.10 mu L) or methiothepin (3 mu g/0.10 mu L) into the dorsal APtN reduced the stimulation-produced antinociception from the RSC in the rat tail flick test. Reduction of incision pain was observed following stimulation of the RSC after the injection of the same substances into the ventral APtN. The injection of atropine (10 ng/0.10 mu L) or ketanserine (5 mu g/0.10 mu L) into the dorsal or ventral APtN was ineffective against the antinociception resulting from RSC stimulation. Significance: mu(1)-opioid- and 5-HT1-expressing neurons and cell processes in dorsal and ventral APtN are both implicated in the mediation of stimulation-produced antinociception from the RSC in the rat tail flick and incision pain tests, respectively. (c) 2012 Elsevier Inc. All rights reserved.
Resumo:
Correlations between GABA(A) receptor (GABA(A)-R) activity and molecular organization of synaptosomal membranes (SM) were studied along the protocol for cholesterol (Cho) extraction with beta-cyclodextrin (beta-CD). The mere pre-incubation (PI) at 37A degrees C accompanying the beta-CD treatment was an underlying source of perturbations increasing [H-3]-FNZ maximal binding (70%) and K (d) (38%), plus a stiffening of SMs' hydrocarbon core region. The latter was inferred from an increased compressibility modulus (K) of SM-derived Langmuir films, a blue-shifted DPH fluorescence emission spectrum and the hysteresis in DPH fluorescence anisotropy (A (DPH)) in SMs submitted to a heating-cooling cycle (4-37-4A degrees C) with A (DPH,heating) < A (DPH,cooling). Compared with PI samples, the beta-CD treatment reduced B (max) by 5% which correlated with a 45%-decrement in the relative Cho content of SM, a decrease in K and in the order parameter in the EPR spectrum of a lipid spin probe labeled at C5 (5-SASL), and significantly increased A (TMA-DPH). PI, but not beta-CD treatment, could affect the binding affinity. EPR spectra of 5-SASL complexes with beta-CD-, SM-partitioned, and free in solution showed that, contrary to what is usually assumed, beta-CD is not completely eliminated from the system through centrifugation washings. It was concluded that beta-CD treatment involves effects of at least three different types of events affecting membrane organization: (a) effect of PI on membrane annealing, (b) effect of residual beta-CD on SM organization, and (c) Cho depletion. Consequently, molecular stiffness increases within the membrane core and decreases near the polar head groups, leading to a net increase in GABA(A)-R density, relative to untreated samples.
Resumo:
The effects of three types of global ischemia by occlusion of carotid artery on motor and exploratory behaviors of Gerbils were evaluated by the Activity Cage and Rota rod tests. Animals were divided based on two surgical criteria: unilateral (UNI) or bilateral (BIL) carotid occlusion, with (REP) or without (OCL) reperfusion; and their behavior was evaluated on the fourth (4) or sixth (6) day. There was reduction of cell number in striatum, motor cortex M1 area, and hippocampal CA1 area in all groups in comparison to control animals. For M1 area and striatum, the largest reduction was observed in UNI6, UNI4, and BIL4 groups. Neuronal loss was also observed in CA1 area of BIL4 rodents. There was a decrease in crossings and rearings in all groups in activity cage test, compared to control. Reperfusion, unilateral and bilateral occlusion groups showed decrease in crossings. Only the BIL4 showed a decrease of rearing. In the Rota rod test, except the UNIOCL6, the groups showed a decrease in the balance in comparison to control. Both groups with REP4 showed a major decrease in balance. These findings suggest that both unilateral and bilateral carotid occlusions with reperfusion produce impairments of motor and exploratory behavior. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Ferreira-Junior NC, Fedoce AG, Alves FHF, Correa FMA, Resstel LBM. Medial prefrontal cortex endocannabinoid system modulates baroreflex activity through CB1 receptors. Am J Physiol Regul Integr Comp Physiol 302: R876-R885, 2012. First published December 28, 2011; doi: 10.1152/ajpregu.00330.2011.-Neural reflex mechanisms, such as the baroreflex, are involved in the regulation of cardiovascular system activity. Previous results from our group (Resstel LB, Correa FM. Medial prefrontal cortex NMDA receptors and nitric oxide modulate the parasympathetic component of the baroreflex. Eur J Neurosci 23: 481-488, 2006) have shown that glutamatergic synapses in the ventral portion of the medial prefrontal cortex (vMPFC) modulate baroreflex activity. Moreover, glutamatergic neurotransmission in the vMPFC can be modulated by the endocannabinoids system (eCBs), particularly the endocannabinoid anandamide, through presynaptic CB1 receptor activation. Therefore, in the present study, we investigated eCBs receptors that are present in the vMPFC, and more specifically whether CB1 receptors modulate baroreflex activity. We found that bilateral microinjection of the CB1 receptor antagonist AM251 (100 or 300 pmol/200 nl) into the vMPFC increased baroreflex activity in unanesthetized rats. Moreover, bilateral microinjection of either the anandamide transporter inhibitor AM404 (100 pmol/200 nl) or the inhibitor of the enzyme fatty acid amide hydrolase that degrades anandamide, URB597 (100 pmol/200 nl), into the MPFC decreased baroreflex activity. Finally, pretreatment of the vMPFC with an ineffective dose of AM251 (10 pmol/200 nl) was able to block baroreflex effects of both AM404 and URB597. Taken together, our results support the view that the eCBs in the vMPFC is involved in the modulation of baroreflex activity through the activation of CB1 receptors, which modulate local glutamate release.