8 resultados para Oral bacterial microflora

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

40.00% 40.00%

Publicador:

Resumo:

FUNDAMENTO: Penicilina G benzatina a cada 3 semanas é o protocolo padrão para a profilaxia secundária para febre reumática recorrente. OBJETIVO: Avaliar o efeito da penicilina G benzatina em Streptococcus sanguinis e Streptococcus oralis em pacientes com doença valvular cardíaca, devido à febre reumática com recebimento de profilaxia secundária. MÉTODOS: Estreptococos orais foram avaliados antes (momento basal) e após 7 dias (7º dia) iniciando-se com penicilina G benzatina em 100 pacientes que receberam profilaxia secundária da febre reumática. Amostras de saliva foram avaliadas para verificar a contagem de colônias e presença de S. sanguinis e S. oralis. Amostras de saliva estimulada pela mastigação foram serialmente diluídas e semeadas em placas sobre agar-sangue de ovelhas seletivo e não seletivo a 5% contendo penicilina G. A identificação da espécie foi realizada com testes bioquímicos convencionais. Concentrações inibitórias mínimas foram determinadas com o Etest. RESULTADOS: Não foram encontradas diferenças estatísticas da presença de S. sanguinis comparando-se o momento basal e o 7º dia (p = 0,62). No entanto, o número existente de culturas positivas de S. oralis no 7º dia após a Penicilina G benzatina apresentou um aumento significativo em relação ao valor basal (p = 0,04). Não houve diferença estatística existente entre o momento basal e o 7º dia sobre o número de S. sanguinis ou S. oralis UFC/mL e concentrações inibitórias medianas. CONCLUSÃO: O presente estudo mostrou que a Penicilina G benzatina a cada 3 semanas não alterou a colonização por S. sanguinis, mas aumentou a colonização de S. oralis no 7º dia de administração. Portanto, a susceptibilidade do Streptococcus sanguinis e Streptococcus oralis à penicilina G não foi modificada durante a rotina de profilaxia secundária da febre reumática utilizando a penicilina G.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective Bacterial species have been found harboring the internal surface of dental implants as consequence of their failed connections. The aim of the present study was to compare the detection frequency of bacterial leakage from human saliva through the implantabutment interface, under non-loading conditions, using either DNA Checkerboard or culture method. Materials and methods Thirty dental implants with hexagonal platforms were connected to pre-machined abutments according to the manufacturers specifications. The assemblies were individually incubated in human saliva under anaerobic conditions for 7 similar to days at 37 degrees C. Afterward, contents from the inner parts of the implants were collected and evaluated with either DNA Checkerboard (s similar to=similar to 15) or culture (n similar to=similar to 15). Subsequently, identification and quantitation of bacterial species from saliva and implants were carried out for the group evaluated with the DNA Checkerboard method. Results Both DNA Checkerboard and culture showed positive signals of bacterial leakage in 6 of the 15 evaluated samples. Capnocytophaga gingivalis and Streptococcus mutans were the most frequently detected species harboring the internal surface of the implants followed by Veillonella parvula. Conclusion Occurrence of bacterial leakage along the implantabutment interface is comparably detected with both DNA Checkerboard hybridization and conventional culture methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human infections with EHEC such as O157:H7 have been a great concern for worldwide food-industry surveillance. This pathogen is commonly associated with bloody diarrhea that can evolve to the life-threatening hemolytic uremic syndrome. Animals are the natural reservoir where this pathogen remains asymptomatically, in steps of ingestion and colonization of the bowel. The bacterium is shed in the feces, contaminating the surroundings, including water and food that are directed for human consumption. A major player in this colonization process is intimin, an outer membrane adhesion molecule encoded by the E. coli attachment and effacement (eae) gene that has been shown to be essential for intimate bacterial attachment to eukaryotic host cells. In an attempt to reduce the colonization of animal reservoirs with EHEC O157:H7, we designed a vaccine model to induce an immune response against intimin gamma. The model is based on its recombinant expression in attenuated Salmonella, used as a suitable vaccine vector because of its recognized ability to deliver recombinant antigens and to elicit all forms of immunity: mucosal, systemic, and humoral responses. To test this model, mice were orally immunized with a S. enterica serovar Typhimurium strain carrying the pYA3137eaeA vector, and challenged with E. coli O157:H7. Here we show that immunization induced the production of high levels of specific IgG and IgA antibodies and promoted reduction in the fecal shedding of EHEC after challenge. The live recombinant vaccine reported herein may contribute to the efforts of reducing animal intestinal mucosa colonization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Myiasis is the invasion of living tissue of humans and other mammals by eggs or maggots of flies of the order of Diptera. It occurs mainly in the Tropics and is associated with inadequate public and personal hygiene. Oral myiases in an older man appears to be rare. Objective: To relate a case of oral myiases in a debilitated older man treated by mechanical removal of the maggots, identifying the adult insect that caused the infestation. Methods: The diagnosis of oral myiasis was established by the clinical examination and it was detected that the infestation involved only soft tissue and the sinus cavity. The patient was submitted to two mechanical removal of the visible maggots. Results: Total of 110 maggots was removed from the oral cavity of the patient and adult insects was identified as belonging to the Calliphoridae Family, Cochliomyia hominivorax species. The patient died two days after the second procedure by severe systemic complications. Conclusions: The mechanic removal and the identification of the maggots must be adopted as soon as possible to prevent further tissue damage and bacterial infection in cases of oral myiasis. Special attention should be given to the debilitated old patients that are particularly susceptible to oral myiasis infestation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. The eating disorders anorexia and bulimia nervosa can cause several systemic and oral alterations related to poor nutrition and induced vomiting; however, the oral microflora of these patients is poorly studied. Objective. The aim of this study was to evaluate fungal microflora in the oral cavity of these patients by culture-dependent and culture-independent methods. Study Design. Oral rinse samples were cultured to assess the prevalence of Candida species, and the isolates were identified by API system. Microorganism counts were compared by the Mann-Whitney test (5%). Ribotyping, a type of molecular analysis, was performed by sequencing the D1/D2 regions of 28S rRNA. Results. Our results demonstrated that the eating disorder group showed higher oral Candida spp. prevalence with culture-dependent methods and higher species diversity with culture-independent methods. Conclusions. Eating disorders can lead to an increased oral Candida carriage. Culture-independent identification found greater fungal diversity than culture-dependent methods. (Oral Surg Oral Med Oral Pathol Oral Radiol 2012;113:512-517)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim: The primary aim of this longitudinal study was to evaluate additional effects of 4-week chlorhexidine digluconate (CHX) gel treatments to control Aggregatibacter actinomycetemcomitans counts in children after professional dental prophylaxis. Porphyromonas gingivalis and Streptococcus mutans counts were also determined to evaluate the secondary effects of anti-plaque treatments on microbial shifts. Methods: Twenty-six children with A. actinomycetemcomitans counts >4 log10/ mL of saliva and/or Quigley-Hein plaque index >3.0 were enrolled in this study. Patients were randomly assigned to groups GI (placebo gel), GII (0.5% CHX gel), GIII (1% CHX gel), and GIV (2% CHX gel). Four sessions of treatment were performed during 4 weeks after a session of professional dental prophylaxis. Real-Time polymerase chain reaction (PCR) was used to determine viable microorganism counts in non-stimulated whole saliva samples collected at baseline, one week, one month and three months after interruption of treatments. Results: A reduction of all bacterial counts was detected after the 3-month follow-up in all groups. Lower counts of P. gingivalis were achieved from 1 week on after treatments. The 2% CHX concentration seemed to contribute to lower A. actinomycetemcomitans levels and increase S. mutans levels. Conclusions: Professional dental prophylaxis was effective to control salivary levels of A. actinomycetemcomitans, P. gingivalis and S. mutans. Additional antimicrobial effects, however, were not observed by the combination of professional dental prophylaxis and 4-week chlorhexidine gel treatments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epithelial cells in oral cavities can be considered reservoirs for a variety of bacterial species. A polymicrobial intracellular flora associated with periodontal disease has been demonstrated in buccal cells. Important aetiological agents of systemic and nosocomial infections have been detected in the microbiota of subgingival biofilm, especially in individuals with periodontal disease. However, non-oral pathogens internalized in oral epithelial cells and their relationship with periodontal status are poorly understood. The purpose of this study was to detect opportunistic species within buccal and gingival crevice epithelial cells collected from subjects with periodontitis or individuals with good periodontal health, and to associate their prevalence with periodontal clinical status. Quantitative detection of total bacteria and Staphylococcus aureus, Pseudomonas aeruginosa and Enterococcus faecalis in oral epithelial cells was determined by quantitative real-time PCR using universal and species-specific primer sets. Intracellular bacteria were visualized by confocal microscopy and fluorescence in situ hybridization. Overall, 33 % of cell samples from patients with periodontitis contained at least one opportunistic species, compared with 15 % of samples from healthy individuals. E. faecalis was the most prevalent species found in oral epithelial cells (detected in 20.6 % of patients with periodontitis, P = 0.03 versus healthy individuals) and was detected only in cells from patients with periodontitis. Quantitative real-time PCR showed that high levels of P. aeruginosa and S. aureus were present in both the periodontitis and healthy groups. However, the proportion of these species was significantly higher in epithelial cells of subjects with periodontitis compared with healthy individuals (P = 0.016 for P. aeruginosa and P = 0.047 for S. aureus). Although E. faecalis and P. aeruginosa were detected in 57 % and 50 % of patients, respectively, with probing depth and clinical attachment level ≥6 mm, no correlation was found with age, sex, bleeding on probing or the presence of supragingival biofilm. The prevalence of these pathogens in epithelial cells is correlated with the state of periodontal disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photodynamic therapy (PDT) is based on the synergism of a photosensitive drug (a photosensitizer) and visible light to destroy target cells (e.g., malignant, premalignant, or bacterial cells). The aim of this study was to investigate the response of normal rat tongue mucosa to PDT following the topical application of hematoporphyrin derivative (Photogem®), Photodithazine®, methylene blue (MB), and poly(lactic-co-glycolic acid) (PLGA) nanoparticles loaded with MB. One hundred and thirty three rats were randomly divided in various groups: the PDT groups were treated with the photosensitizers for 10 min followed by exposure to red light. Those in control groups received neither photosensitizer nor light, and they were subjected to light exposure alone or to photosensitizer alone. Fluorescent signals were obtained from tongue tissue immediately after the topical application of photosensitizers and 24 h following PDT. Histological changes were evaluated at baseline and at 1, 3, 7, and 15 days post-PDT treatment. Fluorescence was detected immediately after the application of the photosensitizers, but not 24 h following PDT. Histology revealed intact mucosa in all experimental groups at all evaluation time points. The results suggest that there is a therapeutic window where PDT with Photogem®, Photodithazine®, MB, and MB-loaded PLGA nanoparticles could safely target oral pathogenic bacteria without damaging normal oral tissue.