4 resultados para Optimal reactive source expansion

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new approach called the Modified Barrier Lagrangian Function (MBLF) to solve the Optimal Reactive Power Flow problem is presented. In this approach, the inequality constraints are treated by the Modified Barrier Function (MBF) method, which has a finite convergence property: i.e. the optimal solution in the MBF method can actually be in the bound of the feasible set. Hence, the inequality constraints can be precisely equal to zero. Another property of the MBF method is that the barrier parameter does not need to be driven to zero to attain the solution. Therefore, the conditioning of the involved Hessian matrix is greatly enhanced. In order to show this, a comparative analysis of the numeric conditioning of the Hessian matrix of the MBLF approach, by the decomposition in singular values, is carried out. The feasibility of the proposed approach is also demonstrated with comparative tests to Interior Point Method (IPM) using various IEEE test systems and two networks derived from Brazilian generation/transmission system. The results show that the MBLF method is computationally more attractive than the IPM in terms of speed, number of iterations and numerical conditioning. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Fed-batch culture allows the cultivation of Arthrospira platensis using urea as nitrogen source. Tubular photobioreactors substantially increase cell growth, but the successful use of this cheap nitrogen source requires a knowledge of the kinetic and thermodynamic parameters of the process. This work aims at identifying the effect of two independent variables, temperature (T) and urea daily molar flow-rate (U), on cell growth, biomass composition and thermodynamic parameters involved in this photosynthetic cultivation. RESULTS: The optimal values obtained were T = 32 degrees C and U = 1.16 mmol L-1 d-1, under which the maximum cell concentration was 4186 +/- 39 mg L-1, cell productivity 541 +/- 5 mg L-1 d-1 and yield of biomass on nitrogen 14.3 +/- 0.1 mg mg-1. Applying an Arrhenius-type approach, the thermodynamic parameters of growth (?H* = 98.2 kJ mol-1; ?S* = - 0.020 kJ mol-1 K-1; ?G* = 104.1 kJ mol-1) and its thermal inactivation (Delta H-D(0) =168.9 kJ mol-1; Delta S-D(0) = 0.459 kJ mol-1 K-1; Delta G(D)(0) =31.98 kJ mol-1) were estimated. CONCLUSIONS: To maximize cell growth T and U were simultaneously optimized. Biomass lipid content was not influenced by the experimental conditions, while protein content was dependent on both independent variables. Using urea as nitrogen source prevented the inhibitory effect already observed with ammonium salts. Copyright (c) 2012 Society of Chemical Industry

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show that a single imperfect fluid can be used as a source to obtain a mass-varying black hole in an expanding universe. This approach generalizes the well-known McVittie spacetime, by allowing the mass to vary thanks to a novel mechanism based on the presence of a temperature gradient. This fully dynamical solution, which does not require phantom fields or fine-tuning, is a step forward in a new direction in the study of systems whose local gravitational attraction is coupled to the expansion of the universe. We present a simple but instructive example for the mass function and briefly discuss the structure of the apparent horizons and the past singularity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High fat diets and accompanying hepatic steatosis are highly prevalent conditions. Previous work has shown that steatosis is accompanied by enhanced generation of reactive oxygen species (ROS), which may mediate further liver damage. Here we investigated mechanisms leading to enhanced ROS generation following high fat diets (HFD). We found that mitochondria from HFD livers present no differences in maximal respiratory rates and coupling, but generate more ROS specifically when fatty acids are used as substrates. Indeed, many acyl-CoA dehydrogenase isoforms were found to be more highly expressed in HFD livers, although only the very long chain acyl-CoA dehydrogenase (VLCAD) was more functionally active. Studies conducted with permeabilized mitochondria and different chain length acyl-CoA derivatives suggest that VLCAD is also a source of ROS production in mitochondria of HFD animals. This production is stimulated by the lack of NAD+. Overall, our studies uncover VLCAD as a novel, diet-sensitive, source of mitochondrial ROS.