2 resultados para Optical Sector

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE. We previously demonstrated that most eyes have regionally variable extensions of Bruch's membrane (BM) inside the clinically identified disc margin (DM) that are clinically and photographically invisible. We studied the impact of these findings on DM- and BM opening (BMO)-derived neuroretinal rim parameters. METHODS. Disc stereo-photography and spectral domain optical coherence tomography (SD-OCT, 24 radial B-scans centered on the optic nerve head) were performed on 30 glaucoma patients and 10 age-matched controls. Photographs were colocalized to SD-OCT data such that the DM and BMO could be visualized in each B-scan. Three parameters were computed: (1) DM-horizontal rim width (HRW), the distance between the DM and internal limiting membrane (ILM) along the DM reference plane; (2) BMO-HRW, the distance between BMO and ILM along the BMO reference plane; and (3) BMO-minimum rim width (MRW), the minimum distance between BMO and ILM. Rank-order correlations of sectors ranked by rim width and spatial concordance measured as angular distances between equivalently ranked sectors were derived. RESULTS. The average DM position was external to BMO in all quadrants, except inferotemporally. There were significant sectoral differences among all three rim parameters. DM- HRW and BMO-HRW sector ranks were better correlated (median rho = 0.84) than DM- HRW and BMO-MRW (median rho = 0.55), or BMO-HRW and BMO-MRW (median rho = 0.60) ranks. Sectors with the narrowest BMO-MRW were infrequently the same as those with the narrowest DM-HRW or BMO-HRW. CONCLUSIONS. BMO-MRW quantifies the neuroretinal rim from a true anatomical outer border and accounts for its variable trajectory at the point of measurement. (Invest Ophthalmol Vis Sci. 2012;53:1852-1860) DOI:10.1167/iovs.11-9309

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To evaluate the relationship between glaucomatous structural damage assessed by the Cirrus Spectral Domain OCT (SDOCT) and functional loss as measured by standard automated perimetry (SAP). Methods: Four hundred twenty-two eyes (78 healthy, 210 suspects, 134 glaucomatous) of 250 patients were recruited from the longitudinal Diagnostic Innovations in Glaucoma Study and from the African Descent and Glaucoma Evaluation Study. All eyes underwent testing with the Cirrus SDOCT and SAP within a 6-month period. The relationship between parapapillary retinal nerve fiber layer thickness (RNFL) sectors and corresponding topographic SAP locations was evaluated using locally weighted scatterplot smoothing and regression analysis. SAP sensitivity values were evaluated using both linear as well as logarithmic scales. We also tested the fit of a model (Hood) for structure-function relationship in glaucoma. Results: Structure was significantly related to function for all but the nasal thickness sector. The relationship was strongest for superotemporal RNFL thickness and inferonasal sensitivity (R(2) = 0.314, P < 0.001). The Hood model fitted the data relatively well with 88% of the eyes inside the 95% confidence interval predicted by the model. Conclusions: RNFL thinning measured by the Cirrus SDOCT was associated with correspondent visual field loss in glaucoma.