14 resultados para Nutrient-use efficiency

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eucalyptus plantations occupy almost 20 million ha worldwide and exceed 3.7 million ha in Brazil alone. Improved genetics and silviculture have led to as much as a three-fold increase in productivity in Eucalyptus plantations in Brazil and the large land area occupied by these highly productive ecosystems raises concern over their effect on local water supplies. As part of the Brazil Potential Productivity Project, we measured water use of Eucalyptus grandis x urophylla clones in rainfed and irrigated stands in two plantations differing in productivity. The Aracruz (lower productivity) site is located in the state of Espirito Santo and the Veracel (higher productivity) site in Bahia state. At each plantation, we measured stand water use using homemade sap flow sensors and a calibration curve using the clones and probes we utilized in the study. We also quantified changes in growth, leaf area and water use efficiency (the amount of wood produced per unit of water transpired). Measurements were conducted for 1 year during 2005 at Aracruz and from August through December 2005 at Veracel. Transpiration at both sites was high compared to other studies but annual estimates at Aracruz for the rainfed treatment compared well with a process model calibrated for the Aracruz site (within 10%). Annual water use at Aracruz was 1394 mm in rainfed treatments versus 1779 mm in irrigated treatments and accounted for approximately 67% and 58% of annual precipitation and irrigation inputs respectively. Increased water use in the irrigated stands at Aracruz was associated with higher sapwood area, leaf area index and transpiration per unit leaf area but there was no difference in the response of canopy conductance with air saturation deficit between treatments. Water use efficiency at the Aracruz site was also not influenced by irrigation and was similar to the rainfed treatment. During the period of overlapping measurements, the response to irrigation treatments at the more productive Veracel site was similar to Aracruz. Stand water use at the Veracel site totaled 975 mm and 1102 mm in rainfed and irrigated treatments during the 5-month measurement period respectively. Irrigated stands at Veracel also had higher leaf area with no difference in the response of canopy conductance with air saturation deficit between treatments. Water use efficiency was also unaffected by irrigation at Veracel. Results from this and other studies suggest that improved resource availability does not negatively impact water use efficiency but increased productivity of these plantations is associated with higher water use and should be given consideration during plantation management decision making processes aimed at increasing productivity. Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work was to determine the impact of three levels of [CO2] and two levels of soil-nutrient availability on the growth and physiological responses of two tropical tree species differing in their ecological group: Croton urucurana Baillon, a pioneer (P), and also Cariniana legalis (Martius) Kuntze, a late succession (LS). We aimed to test the hypothesis that P species have stronger response to elevated [CO2] than LS species as a result of differences in photosynthetic capacity and growth kinetics between both functional groups. Seedlings of both species were grown in open-top-chambers under high (HN) or low (LN) soil-nutrient supply and exposed to ambient (380 mu mol mol(-1)) or elevated (570 and 760 mu mol mol(-1)) [CO2]. Measurements of gas exchange, chlorophyll a fluorescence, seedling biomass and allocation were made after 70 days of treatment. Results suggest that elevated [CO2] significantly enhances the photosynthetic rates (A) and biomass production in the seedlings of both species, but that soil-nutrient supply has the potential to modify the response of young tropical trees to elevated [CO2]. In relation to plants grown in ambient [CO2], the P species grown under 760 mu mol mol(-1) [CO2] showed increases of 28% and 91% in A when grown in LN and HN, respectively. In P species grown under 570 mu mol mol(-1) [CO2], A increased by 16% under HN, but there was no effect in LN. In LS species, the enhancement of A by effect of 760 mu mol mol(-1) [CO2] was 30% and 70% in LN and HN, respectively. The exposure to 570 mu mol mol(-1) [CO2] stimulated A by 31% in HN, but was no effect in LN. Reductions in stomatal conductance (g(s)) and transpiration (E), as a result of elevated [CO2] were observed. Increasing the nutrient supply from low to high increased both the maximum rate of carboxylation (V-cmax) and maximum potential rate of electron transport (J(max)). As the level of [CO2] increased, both the V-cmax and the J(max) were found to decrease, whereas the J(max)/V-cmax ratio increased. In the LS species, the maximum efficiency of PSII (F-v/F-m) was higher in the 760 mu mol mol(-1) [CO2] treatment relative to other [CO2] treatments. The results suggest that when grown under HN and the highest [CO2], the performance of the P species C. urucurana, in terms of photosynthesis and biomass enhancement, is better than the LS species C. legalis. However, a larger biomass is allocated to roots when C. legalis seedlings were exposed to elevated [CO2]. This response would be an important strategy for plant survival and productivity of the LS species under drought stresses conditions on tropical environments in a global-change scenario. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Introducing nitrogen-fixing tree species in fast-growing eucalypt plantations has the potential to improve soil nitrogen availability compared with eucalypt monocultures. Whether or not the changes in soil nutrient status and stand structure will lead to mixtures that out-yield monocultures depends on the balance between positive interactions and the negative effects of interspecific competition, and on their effect on carbon (C) uptake and partitioning. We used a C budget approach to quantify growth, C uptake and C partitioning in monocultures of Eucalyptus grandis (W. Hill ex Maiden) and Acacia mangium (Willd.) (treatments E100 and A100, respectively), and in a mixture at the same stocking density with the two species at a proportion of 1 : 1 (treatment MS). Allometric relationships established over the whole rotation, and measurements of soil CO2 efflux and aboveground litterfall for ages 4-6 years after planting were used to estimate aboveground net primary production (ANPP), total belowground carbon flux (TBCF) and gross primary production (GPP). We tested the hypotheses that (i) species differences for wood production between E. grandis and A. mangium monocultures were partly explained by different C partitioning strategies, and (ii) the observed lower wood production in the mixture compared with eucalypt monoculture was mostly explained by a lower partitioning aboveground. At the end of the rotation, total aboveground biomass was lowest in A100 (10.5 kg DM m(-2)), intermediate in MS (12.2 kg DM m(-2)) and highest in E100 (13.9 kg DM m(-2)). The results did not support our first hypothesis of contrasting C partitioning strategies between E. grandis and A. mangium monocultures: the 21% lower growth (delta B-w) in A100 compared with E100 was almost entirely explained by a 23% lower GPP, with little or no species difference in ratios such as TBCF/GPP, ANPP/TBCF, delta B-w/ANPP and delta B-w/GPP. In contrast, the 28% lower delta B-w in MS than in E100 was explained both by a 15% lower GPP and by a 15% lower fraction of GPP allocated to wood growth, thus partially supporting our second hypothesis: mixing the two species led to shifts in C allocations from above- to belowground, and from growth to litter production, for both species.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Drought is a major abiotic stress that affects crop productivity worldwide. Sugarcane can withstand periods of water scarcity during the final stage of culm maturation, during which sucrose accumulation occurs. Meanwhile, prolonged periods of drought can cause severe plant losses. Methodology/Principal Findings: In a previous study, we evaluated the transcriptome of drought-stressed plants to better understand sugarcane responses to drought. Among the up-regulated genes was Scdr1 (sugarcane drought-responsive 1). The aim of the research reported here was to characterize this gene. Scdr1 encodes a putative protein containing 248 amino acids with a large number of proline (19%) and cysteine (13%) residues. Phylogenetic analysis showed that ScDR1is in a clade with homologs from other monocotyledonous plants, separate from those of dicotyledonous plants. The expression of Scdr1 in different varieties of sugarcane plants has not shown a clear association with drought tolerance. Conclusions/Significance: The overexpression of Scdr1 in transgenic tobacco plants increased their tolerance to drought, salinity and oxidative stress, as demonstrated by increased photosynthesis, water content, biomass, germination rate, chlorophyll content and reduced accumulation of ROS. Physiological parameters, such as transpiration rate (E), net photosynthesis (A), stomatal conductance (gs) and internal leaf CO2 concentration, were less affected by abiotic stresses in transgenic Scdr1 plants compared with wild-type plants. Overall, our results indicated that Scdr1 conferred tolerance to multiple abiotic stresses, highlighting the potential of this gene for biotechnological applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Os objetivos deste trabalho foram determinar o controle genético da eficiência no uso do nitrogênio (EUN), identificar a importância das eficiências na absorção (EAN) e na utilização (EUtN) na sua composição,  e quantificar relação entre produção de matéria seca da parte aérea (MPS) e do sistema radicular com a EUN e  com seus componentes. Foram avaliadas 41 combinações híbridas em duas disponibilidades de N: baixa (BN)  e alta (AN). Utilizou-se o delineamento de blocos ao acaso com duas repetições, em arranjo fatorial simples  (combinação híbrida x disponibilidade de N). As análises estatísticas foram realizadas por meio das equações  de modelos mistos. Correlações de elevada magnitude foram detectadas entre EAN e EUN, bem como entre  essas eficiências e a MPS, tanto em BN como em AN. Em ambas as disponibilidades de N, efeitos genéticos  aditivos apresentaram maior importância para os caracteres associados à EUN. Dessa forma, a seleção baseada  no desempenho individual de linhagens quanto à MPS pode possibilitar a obtenção de genótipos com alta  EUN. Independentemente da disponibilidade de N, a EAN é o componente mais importante da EUN.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of this work was to evaluate the effect of doses of selenate and selenite on rice (Oryza sativa) biofortification with Se, as well the influence of these forms of Se in the levels of P, S, Fe, and Zn in grains. The experiment was conducted in a greenhouse, in pots with 4 dm(3) of a sandy clay loam Latosol, with medium texture, in a 5x2 factorial arrangement with five doses of Se (0, 0.75, 1.50, 3.0, and 6.0 mg dm(-3)) and two forms of Se (selenate and selenite). Selenate provided greater efficiency of root uptake of Se, plant-use efficiency, translocation from roots to shoots, and content of this element in rice grains. The application of Se during fertilization influences the levels of P, S, and Zn, but does not affect those of Fe in rice grains.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Wood production represents a large but variable fraction of gross primary production (GPP) in highly productive Eucalyptus plantations. Assessing patterns of carbon (C) partitioning (C flux as a fraction of GPP) between above- and belowground components is essential to understand mechanisms driving the C budget of these plantations. Better knowledge of fluxes and partitioning to woody and non-woody tissues in response to site characteristics and resource availability could provide opportunities to increase forest productivity. Our study aimed at investigating how C allocation varied within one apparently homogeneous 90 ha stand of Eucalyptus grandis (W. Hill ex Maiden) in Southeastern Brazil. We assessed annual above-ground net primary production (ANPP: stem, leaf, and branch production) and total belowground C flux (TBCF: the sum of root production and respiration and mycorrhizal production and respiration), GPP (computed as the sum of ANPP, TBCF and estimated aboveground respiration) on 12 plots representing the gradient of productivity found within the stand. The spatial heterogeneity of topography and associated soil attributes across the stand likely explained this fertility gradient. Component fluxes of GPP and C partitioning were found to vary among plots. Stem NPP ranged from 554 g C m(-2) year(-1) on the plot with lowest GPP to 923 g C m(-2) year(-1) on the plot with highest GPP. Total belowground carbon flux ranged from 497 to 1235 g C m(-2) year(-1) and showed no relationship with ANPP or GPP. Carbon partitioning to stem NPP increased from 0.19 to 0.23, showing a positive trend of increase with GPP (R-2 = 0.29, P = 0.07). Variations in stem wood production across the gradient of productivity observed at our experimental site were a result of the variability in C partitioning to different forest system components.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

DISTRIBUTION OF NITROGEN AMMONIUM SULFATE (N-15) SOIL-PLANT SYSTEM IN A NO-TILLAGE CROP SUCCESSION The N use by maize (Zea mays, L.) is affected by N-fertilizer levels. This study was conducted using a sandy-clay texture soil (Hapludox) to evaluate the efficiency of N use by maize in a crop succession, based on N-15-labeled ammonium sulfate (5.5 atom %) at different rates, and to assess the residual fertilizer effect in two no-tillage succession crops (signalgrass and corn). Two maize crops were evaluated, the first in the growing season 2006, the second in 2007, and brachiaria in the second growing season. The treatments consisted of N rates of 60, 120 and 180 kg ha(-1) in the form of labeled N-15 ammonium sulfate. This fertilizer was applied in previously defined subplots, only to the first maize crop (growing season 2006). The variables total accumulated N; fertilizer-derived N in corn plants and pasture; fertilizer-derived N in the soil; and recovery of fertilizer-N by plants and soil were evaluated. The highest uptake of fertilizer N by corn was observed after application of 120 kg ha(-1) N and the residual effect of N fertilizer on subsequent corn and Brachiaria was highest after application of 180 kg ha(-1) N. After the crop succession, soil N recovery was 32, 23 and 27 % for the respective applications of 60, 120 and 180 kg ha(-1) N.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Understanding the underlying mechanisms that account for the impact of potassium (K) fertilization and its replacement by sodium (Na) on tree growth is key to improving the management of forest plantations that are expanding over weathered tropical soils with low amounts of exchangeable bases. A complete randomized block design was planted with Eucalyptus grandis (W. Hill ex Maiden) to quantify growth, carbon uptake and carbon partitioning using a carbon budget approach. A combination of approaches including the establishment of allometric relationships over the whole rotation and measurements of soil CO2 efflux and aboveground litterfall at the end of the rotation were used to estimate aboveground net production (ANPP), total belowground carbon flux and gross primary production (GPP). The stable carbon isotope (delta C-13) of stem wood alpha-cellulose produced every year was used as a proxy for stomatal limitation of photosynthesis. Potassium fertilization increased GPP and decreased the fraction of carbon allocated belowground. Aboveground net production was strongly enhanced, and because leaf lifespan increased, leaf biomass was enhanced without any change in leaf production, and wood production (P-W) was dramatically increased. Sodium application decreased the fraction of carbon allocated belowground in a similar way, and enhanced GPP, ANPP and P-W, but to a lesser extent compared with K fertilization. Neither K nor Na affected delta C-13 of stem wood alpha-cellulose, suggesting that water-use efficiency was the same among the treatments and that the inferred increase in leaf photosynthesis was not only related to a higher stomatal conductance. We concluded that the response to K fertilization and Na addition on P-W resulted from drastic changes in carbon allocation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nitrogen has a complex dynamics in the soil-plant-atmosphere system. N fertilizers are subject to chemical and microbial transformations in soils that can result in significant losses. Considering the cost of fertilizers, the adoption of good management practices like fertigation could improve the N use efficiency by crops. Water balances (WB) were applied to evaluate fertilizer N leaching using 15N labeled urea in west Bahia, Brazil. Three scenarios (2008/2009) were established: i) rainfall + irrigation the full year, ii) rainfall only; and iii) rainfall + irrigation only in the dry season. The water excess was considered equal to the deep drainage for the very flat area (runoff = 0) with a water table located several meters below soil surface (capillary rise = 0). The control volume for water balance calculations was the 0 - 1 m soil layer, considering that it involves the active root system. The water drained below 1 m was used to estimate fertilizer N leaching losses. WB calculations used the mathematic model of Penman-Monteith for evapotranspiration, considering the crop coefficient equal to unity. The high N application rate associated to the high rainfall plus irrigation was found to be the main cause for leaching, which values were 14.7 and 104.5 kg ha-1 for the rates 400 and 800 kg ha-1 of N, corresponding to 3.7 and 13.1 % of the applied fertilizer, respectively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chlorophyll determination with a portable chlorophyll meter can indicate the period of highest N demand of plants and whether sidedressing is required or not. In this sense, defining the optimal timing of N application to common bean is fundamental to increase N use efficiency, increase yields and reduce the cost of fertilization. The objectives of this study were to evaluate the efficiency of N sufficiency index (NSI) calculated based on the relative chlorophyll index (RCI) in leaves, measured with a portable chlorophyll meter, as an indicator of time of N sidedressing fertilization and to verify which NSI (90 and 95 %) value is the most appropriate to indicate the moment of N fertilization of common bean cultivar Perola. The experiment was carried out in the rainy and dry growing seasons of the agricultural year 2009/10 on a dystroferric Red Nitosol, in Botucatu, São Paulo State, Brazil. The experiment was arranged in a randomized complete block design with five treatments, consisting of N managements (M1: 200 kg ha-1 N (40 kg at sowing + 80 kg 15 days after emergence (DAE) + 80 kg 30 DAE); M2: 100 kg ha-1 N (20 kg at sowing + 40 kg 15 DAE + 40 kg 30 DAE); M3: 20 kg ha-1 N at sowing + 30 kg ha-1 when chlorophyll meter readings indicated NSI < 95 %; M4: 20 kg ha-1 N at sowing + 30 kg ha-1 N when chlorophyll meter readings indicated NSI < 90 % and, M5: control (without N application)) and four replications. The variables RCI, aboveground dry matter, total leaf N concentration, production components, grain yield, relative yield, and N use efficiency were evaluated. The RCI correlated with leaf N concentrations. By monitoring the RCI with the chlorophyll meter, the period of N sidedressing of common bean could be defined, improving N use efficiency and avoiding unnecessary N supply to common bean. The NSI 90 % of the reference area was more efficient to define the moment of N sidedressing of common bean, to increase N use efficiency.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O aproveitamento do N pelo milho (Zea mays, L.) é influenciado pelas doses de adubo nitrogenado. O presente trabalho foi desenvolvido em um solo de textura arenoargilosa (Hapludox) e teve por objetivo avaliar a eficiência de utilização do N pela cultura de milho, em uma sucessão de culturas, utilizando-se sulfato de amônio marcado com 15N (5,5 átomos %), em diferentes doses; e o efeito residual desse fertilizante nas duas culturas subsequentes em sucessão (braquiária e milho), sob sistema plantio direto. As avaliações foram feitas em dois cultivos de milho safrinha - o primeiro no ano agrícola 2006 e o segundo em 2007 - e um de braquiária na entressafra. Os tratamentos consistiram de doses de N de 60, 120 e 180 kg ha-1, na forma de sulfato de amônio marcado (15N). Esse adubo foi aplicado em subparcelas, previamente definidas, apenas no primeiro cultivo do milho (safra 2006). Foram avaliados: N-total acumulado; N nas plantas de milho e braquiária proveniente do fertilizante, N no solo proveniente do fertilizante e recuperação de N-fertilizante pelas plantas e pelo solo. O maior aproveitamento do N-fertilizante pelo milho foi obtido no tratamento com 120 kg ha-1 de N, e o maior efeito residual do N-fertilizante pela braquiária e milho subsequente, no tratamento com 180 kg ha-1 de N. Após a sucessão de culturas, a recuperação de N pelo solo foi de 32, 23 e 27 % para os tratamentos com 60, 120 e 180 kg ha-1 de N.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fluxes of CO2 were measured above a sugarcane plantation using the eddy-covariance method covering two growth cycles, representing the second and third re-growth (ratoons) harvested with stubble burning. The total net ecosystem exchange (NEE) in the first cycle (second ratoon, 393 days long) was −1964 ± 44 g C m−2; the gross ecosystem productivity (GEP) was 3612 ± 46 g C m−2 and the ecosystem respiration (RE) was 1648 ± 14 g C m−2. The NEE and GEP totals in the second cycle (third ratoon, 374 days long) decreased 51% and 25%, respectively and RE increased 7%. Accounting for the carbon emitted during biomass burning and the removal of stalks at harvest, net ecosystem carbon balance (NECB) totals were 102 ± 130 g C m−2 and 403 ± 84 g C m−2 in each cycle respectively. Thus the sugarcane agrosystem was approximately carbon neutral in the second ratoon. Yield in stalks fresh weight (SFW) attained the regional average (8.3 kg SFW m−2). Although it was a carbon source to the atmosphere, observed productivity (6.2 kg SFW m−2) of the third ratoon was 19% lower than the regional average due to the lower water availability observed during the initial 120 days of re-growth. However, the overall water use efficiency (WUE) achieved in the first cycle (4.3 g C kg−1 H2O) decreased only 5% in the second cycle. © 2013 Elsevier B.V. All rights reserved

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Chimpanzees have been the traditional referential models for investigating human evolution and stone tool use by hominins. We enlarge this comparative scenario by describing normative use of hammer stones and anvils in two wild groups of bearded capuchin monkeys (Cebus libidinosus) over one year. We found that most of the individuals habitually use stones and anvils to crack nuts and other encased food items. Further, we found that in adults (1) males use stone tools more frequently than females, (2) males crack high resistance nuts more frequently than females, (3) efficiency at opening a food by percussive tool use varies according to the resistance of the encased food, (4) heavier individuals are more efficient at cracking high resistant nuts than smaller individuals, and (5) to crack open encased foods, both sexes select hammer stones on the basis of material and weight. These findings confirm and extend previous experimental evidence concerning tool selectivity in wild capuchin monkeys (Visalberghi et al., 2009b; Fragaszy et al., 2010b). Male capuchins use tools more frequently than females and body mass is the best predictor of efficiency, but the sexes do not differ in terms of efficiency. We argue that the contrasting pattern of sex differences in capuchins compared with chimpanzees, in which females use tools more frequently and more skillfully than males, may have arisen from the degree of sexual dimorphism in body size of the two species, which is larger in capuchins than in chimpanzees. Our findings show the importance of taking sex and body mass into account as separate variables to assess their role in tool use. (C) 2011 Elsevier Ltd. All rights reserved.