14 resultados para Numerical and experimental researches

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reduction of friction and wear in systems presenting metal-to-metal contacts, as in several mechanical components, represents a traditional challenge in tribology. In this context, this work presents a computational study based on the linear Archard's wear law and finite element modeling (FEM), in order to analyze unlubricated sliding wear observed in typical pin on disc tests. Such modeling was developed using finite element software Abaqus® with 3-D deformable geometries and elastic–plastic material behavior for the contact surfaces. Archard's wear model was implemented into a FORTRAN user subroutine (UMESHMOTION) in order to describe sliding wear. Modeling of debris and oxide formation mechanisms was taken into account by the use of a global wear coefficient obtained from experimental measurements. Such implementation considers an incremental computation for surface wear based on the nodal displacements by means of adaptive mesh tools that rearrange local nodal positions. In this way, the worn track was obtained and new surface profile is integrated for mass loss assessments. This work also presents experimental pin on disc tests with AISI 4140 pins on rotating AISI H13 discs with normal loads of 10, 35, 70 and 140 N, which represent, respectively, mild, transition and severe wear regimes, at sliding speed of 0.1 m/s. Numerical and experimental results were compared in terms of wear rate and friction coefficient. Furthermore, in the numerical simulation the stress field distribution and changes in the surface profile across the worn track of the disc were analyzed. The applied numerical formulation has shown to be more appropriate to predict mild wear regime than severe regime, especially due to the shorter running-in period observed in lower loads that characterizes this kind of regime.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work provides a numerical and experimental investigation of fatigue crack growth behavior in steel weldments including crack closure effects and their coupled interaction with weld strength mismatch. A central objective of this study is to extend previously developed frameworks for evaluation of crack clo- sure effects on FCGR to steel weldments while, at the same time, gaining additional understanding of commonly adopted criteria for crack closure loads and their influence on fatigue life of structural welds. Very detailed non-linear finite element analyses using 3-D models of compact tension C ( T ) fracture spec- imens with center cracked, square groove welds provide the evolution of crack growth with cyclic stress intensity factor which is required for the estimation of the closure loads. Fatigue crack growth tests con- ducted on plane-sided, shallow-cracked C ( T ) specimens provide the necessary data against which crack closure effects on fatigue crack growth behavior can be assessed. Overall, the present investigation pro- vides additional support for estimation procedures of plasticity-induced crack closure loads in fatigue analyses of structural steels and their weldments

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We compare experimental and predicted differential scanning calorimetry (DSC) curves for palm oil (PO), peanut oil (PeO) and grapeseed oil (GO). The predicted curves are computed from the solid-liquid equilibrium modelling and direct minimization of the Gibbs free energy. For PO, the lower the scan rate, the better the agreement. The temperature transitions of PeO and GO were predicted with an average deviation of -0.72 degrees C and -1.29 degrees C respectively, in relation to experimental data from literature. However, the predicted curves showed other peaks not reported experimentally, as computed DSC curves correspond to equilibrium hypothesis which is reached experimentally for an infinitely small scan rate. The results revealed that predicted transitions temperatures using equilibrium hypotheses can be useful in pre-experimental evaluation of vegetable oils formulations seeking for desired melting profiles. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flow pumps act as important devices in areas such as Bioengineering, Medicine, and Pharmacy, among other areas of Engineering, mainly for delivering liquids or gases at small-scale and precision flow rate quantities. Principles for pumping fluids based on piezoelectric actuators have been widely studied, since they allow the construction of pump systems for displacement of small fluid volumes with low power consumption. This work studies valveless piezoelectric diaphragm pumps for flow generation, which uses a piezoelectric ceramic (PZT) as actuator to move a membrane (diaphragm) up and down as a piston. The direction of the flow is guaranteed by valveless configuration based on a nozzle-diffuser system that privileges the flow in just one pumping direction. Most research efforts on development of valveless flow pump deal either with computational simulations based on simplified models or with simplified physical approaches based on analytical models. The main objective of this work is the study of a methodology to develop a low-cost valveless piezoelectric diaphragm flow pump using computational simulations, parametric study, prototype manufacturing, and experimental characterization. The parametric study has shown that the eccentricity of PZT layer and metal layer plays a key role in the performance of the pump.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports experiments on the use of a recently introduced advection bounded upwinding scheme, namely TOPUS (Computers & Fluids 57 (2012) 208-224), for flows of practical interest. The numerical results are compared against analytical, numerical and experimental data and show good agreement with them. It is concluded that the TOPUS scheme is a competent, powerful and generic scheme for complex flow phenomena.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper examines the notions of illusions and beliefs, discussing some advantages offered by the study of these phenomena based on the concepts of superstitious behavior, superstition and superstitious rules. Among these advantages, the study highlights the possibility of researching these relationships in different levels of analysis, not only at the individual level, focusing on cultural level, this paper presents Cultural Materialism as an anthropological proposal for the consideration of these phenomena on the cultural level and based on adaptive principles, besides it discusses the experimental analysis of cultural practices and points Out how they can help to understand how people in groups behave such as they are being effective in the control of the surrounding environment (when, sometimes, in fact, they are not). The paper offers an integrative proposal which makes easier behavior analysts' dialogue with social psychologists and offers some routes from cultural analysis of illusions and beliefs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: The development of periapical granulomas is dependent on the host response and involves Th1, Th2, Th17, and Treg-related cytokines. The discovery of new Th9 and Th22 subsets, with important immunomodulatory roles mediated by interleukin (IL)-9 and IL-22, respectively, emphasizes the need for reevaluation of current cytokine paradigms in context of periapical lesions. We investigated the expression of IL-9 and IL-22 in active and stable human granulomas and throughout experimental lesion development in mice. Methods: Periapical granulomas (N = 83) and control specimens (N = 24) were evaluated regarding the expression of IL-9 and IL-22 via realtime polymerase chain reaction. Experimental periapical lesions were induced in mice (pulp exposure and bacterial inoculation) and the lesions evolution correlation with IL-9 and IL-22 expression kinetics was evaluated. Results: IL-9 and IL-22 mRNA expression was higher in periapical lesions than in control samples; higher levels of IL-9 and IL-22 were observed in inactive than in active lesions. In the experimental lesions model, increasing levels of IL-9 and IL-22 mRNA were detected in the lesions, and inverse correlations were found between IL-9 and IL-22 and the increase of lesion area in the different time point intervals. Conclusions: Our results suggest that Th9 and Th22 pathways may contribute to human and experimental periapical lesion stability

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses the theoretical and experimental results obtained for the excitonic binding energy (Eb) in a set of single and coupled double quantum wells (SQWs and CDQWs) of GaAs/AlGaAs with different Al concentrations (Al%) and inter-well barrier thicknesses. To obtain the theoretical Eb the method proposed by Mathieu, Lefebvre and Christol (MLC) was used, which is based on the idea of fractional-dimension space, together with the approach proposed by Zhao et al., which extends the MLC method for application in CDQWs. Through magnetophotoluminescence (MPL) measurements performed at 4 K with magnetic fields ranging from 0 T to 12 T, the diamagnetic shift curves were plotted and adjusted using two expressions: one appropriate to fit the curve in the range of low intensity fields and another for the range of high intensity fields, providing the experimental Eb values. The effects of increasing the Al% and the inter-well barrier thickness on Eb are discussed. The Eb reduction when going from the SQW to the CDQW with 5 Å inter-well barrier is clearly observed experimentally for 35% Al concentration and this trend can be noticed even for concentrations as low as 25% and 15%, although the Eb variations in these latter cases are within the error bars. As the Zhao's approach is unable to describe this effect, the wave functions and the probability densities for electrons and holes were calculated, allowing us to explain this effect as being due to a decrease in the spatial superposition of the wave functions caused by the thin inter-well barrier.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A theoretical approach is used here to explain experimental results obtained from the electrosynthesis of polypyrrole-2-carboxylic acid (PPY-2-COOH) films in nonaqueous medium. An analysis of the Fukui function (reactivity index) indicates that the monomer (pyrrole-2-carboxylic acid, PY-2-COOH), and dimers and trimers are oxidized in the C4 or C5 positions of the heterocyclic ring of the PY-2-COOH structure. After calculating the heat of formation using semiempirical Austin Model 1 post-Hartree-Fock parameterization for dimer species, both C4 and C5 positions adjacent to the aromatic rings of PPY-2-COOH were considered the most susceptible ones to oxidative coupling reactions. The ZINDO-S/CI semiempirical method was used to simulate the electronic transitions typically seen in the UV-VIS-NIR range in monomer and oligomers with different conjugation lengths. The use of an electrochemical quartz crystal microbalance provides sufficient information to propose a polymerization mechanism of PY-2-COOH based on molecular modeling and experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, an experimental and numerical analysis and characterization of functionally graded structures (FGSs) is developed. Nickel (Ni) and copper (Cu) materials are used as basic materials in the numerical modeling and experimental characterization. For modeling, a MATLAB finite element code is developed, which allows simulation of harmonic and modal analysis considering the graded finite element formulation. For experimental characterization, Ni-Cu FGSs are manufactured by using spark plasma sintering technique. Hardness and Young's modulus are found by using microindentation and ultrasonic measurements, respectively. The effective gradation of Ni/Cu FGS is addressed by means of optical microscopy, energy dispersive spectrometry, scanning electron microscopy and hardness testing. For the purpose of comparing modeling and experimental results, the hardness curve, along the gradation direction, is used for identifying the gradation profile; accordingly, the experimental hardness curve is used for approximating the Young's modulus variation and the graded finite element modeling is used for verification. For the first two resonance frequency values, a difference smaller than 1% between simulated and experimental results is obtained. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Turbulence is one of the key problems of classical physics, and it has been the object of intense research in the last decades in a large spectrum of problems involving fluids, plasmas, and waves. In order to review some advances in theoretical and experimental investigations on turbulence a mini-symposium on this subject was organized in the Dynamics Days South America 2010 Conference. The main goal of this mini-symposium was to present recent developments in both fundamental aspects and dynamical analysis of turbulence in nonlinear waves and fusion plasmas. In this paper we present a summary of the works presented at this mini-symposium. Among the questions to be addressed were the onset and control of turbulence and spatio-temporal chaos. (C) 2011 Elsevier B. V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: To investigate the effect of Si addition on a nanometer-scale roughness Ca and P implant surfaces in a canine tibia model by biomechanical and histomorphometric evaluations. Material and methods: The implant surfaces comprised a resorbable media CaP microblasted (control) and a CaP resorbable media + silica-boost microblasted (experimental) surfaces. Surfaces were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and optical interferometry (IFM) down to the nanometric level. The animal model involved the bilateral placement of control (n = 24) and experimental surface (n = 24) implants along the proximal tibiae of six dogs, remaining in vivo for 2 or 4 weeks. After euthanization, half of the specimens were torquedto- interface failure, and the other half was subjected to histomorphologic and bone-to-implant contact (BIC) evaluation. Torque and BIC statistical evaluation was performed by the Friedman test at 95% level of significance, and comparisons between groups was performed by the Dunn test. Results: IFM and SEM observations depicted comparable roughness parameters for both implant surfaces on the micrometer and nanometer scales. XPS analysis revealed similar chemical composition, except for the addition of Si on the experimental group. Torque-to-interface failure and BIC mean values showed no significant differences (P = 0.25 and 0.51, respectively) at both 2- and 4-week evaluation points for experimental and control groups. Early bone healing histomorphologic events were similar between groups. Conclusions: The experimental surface resulted in not significantly different biomechanical fixation and BIC relative to control. Both surfaces were biocompatible and osseoconductive.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new tri-electrode probe is presented and applied to local electrochemical impedance spectroscopy (LEIS) measurements. As opposed to two-probe systems, the three-probe one allows measurement not only of normal, but also of radial contributions of local current densities to the local impedance values. The results concerning the cases of the blocking electrode and the electrode with faradaic reaction are discussed from the theoretical point of view for a disk electrode. Numerical simulations and experimental results are compared for the case of the ferri/ferrocyanide electrode reaction at the Pt working electrode disk. At the centre of the disk, the impedance taking into account both normal and radial contributions was in good agreement with the local impedance measured in terms of only the normal contribution. At the periphery of the electrode, the impedance taking into account both normal and radial contributions differed significantly from the local impedance measured in terms of only the normal contribution. The radial impedance results at the periphery of the electrode are in good agreement with the usual explanation that the associated larger current density is attributed to the geometry of the electrode, which exhibits a greater accessibility at the electrode edge. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MgTiO3 (MTO) thin films were prepared by the polymeric precursor method with posterior spin-coating deposition. The films were deposited on Pt(111)/Ti/SiO2/Si(100) substrates and heat treated at 350 degrees C for 2 h and then heat treated at 400, 450, 500, 550, 600, 650 and 700 C for 2 h. The degree of structural order disorder, optical properties, and morphology of the MTO thin films were investigated by X-ray diffraction (XRD), micro-Raman spectroscopy (MR), ultraviolet-visible (UV-vis) absorption spectroscopy, photoluminescence (PL) measurements, and field-emission gun scanning electron microscopy (FEG-SEM) to investigate the morphology. XRD revealed that an increase in the annealing temperature resulted in a structural organization of MTO thin films. First-principles quantum mechanical calculations based on density functional theory (B3LYP level) were employed to study the electronic structure of ordered and disordered asymmetric models. The electronic properties were analyzed, and the relevance of the present theoretical and experimental results was discussed in the light of PL behavior. The presence of localized electronic levels and a charge gradient in the band gap due to a break in the symmetry are responsible for the PL in disordered MTO lattice.