12 resultados para Non-linear multiple regression
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The plasma density evolution in sawtooth regime on the Tore Supra tokamak is analyzed. The density is measured using fast-sweeping X-mode reflectometry which allows tomographic reconstructions. There is evidence that density is governed by the perpendicular electric flows, while temperature evolution is dominated by parallel diffusion. Postcursor oscillations sometimes lead to the formation of a density plateau, which is explained in terms of convection cells associated with the kink mode. A crescent-shaped density structure located inside q = 1 is often visible just after the crash and indicates that some part of the density withstands the crash. 3D full MHD nonlinear simulations with the code XTOR-2F recover this structure and show that it arises from the perpendicular flows emerging from the reconnection layer. The proportion of density reinjected inside the q = 1 surface is determined, and the implications in terms of helium ash transport are discussed. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4766893]
Resumo:
Further advances in magnetic hyperthermia might be limited by biological constraints, such as using sufficiently low frequencies and low field amplitudes to inhibit harmful eddy currents inside the patient's body. These incite the need to optimize the heating efficiency of the nanoparticles, referred to as the specific absorption rate (SAR). Among the several properties currently under research, one of particular importance is the transition from the linear to the non-linear regime that takes place as the field amplitude is increased, an aspect where the magnetic anisotropy is expected to play a fundamental role. In this paper we investigate the heating properties of cobalt ferrite and maghemite nanoparticles under the influence of a 500 kHz sinusoidal magnetic field with varying amplitude, up to 134 Oe. The particles were characterized by TEM, XRD, FMR and VSM, from which most relevant morphological, structural and magnetic properties were inferred. Both materials have similar size distributions and saturation magnetization, but strikingly different magnetic anisotropies. From magnetic hyperthermia experiments we found that, while at low fields maghemite is the best nanomaterial for hyperthermia applications, above a critical field, close to the transition from the linear to the non-linear regime, cobalt ferrite becomes more efficient. The results were also analyzed with respect to the energy conversion efficiency and compared with dynamic hysteresis simulations. Additional analysis with nickel, zinc and copper-ferrite nanoparticles of similar sizes confirmed the importance of the magnetic anisotropy and the damping factor. Further, the analysis of the characterization parameters suggested core-shell nanostructures, probably due to a surface passivation process during the nanoparticle synthesis. Finally, we discussed the effect of particle-particle interactions and its consequences, in particular regarding discrepancies between estimated parameters and expected theoretical predictions. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. [http://dx.doi. org/10.1063/1.4739533]
Resumo:
We consider modifications of the nonlinear Schrodinger model (NLS) to look at the recently introduced concept of quasi-integrability. We show that such models possess an in finite number of quasi-conserved charges which present intriguing properties in relation to very specific space-time parity transformations. For the case of two-soliton solutions where the fields are eigenstates of this parity, those charges are asymptotically conserved in the scattering process of the solitons. Even though the charges vary in time their values in the far past and the far future are the same. Such results are obtained through analytical and numerical methods, and employ adaptations of algebraic techniques used in integrable field theories. Our findings may have important consequences on the applications of these models in several areas of non-linear science. We make a detailed numerical study of the modified NLS potential of the form V similar to (vertical bar psi vertical bar(2))(2+epsilon), with epsilon being a perturbation parameter. We perform numerical simulations of the scattering of solitons for this model and find a good agreement with the results predicted by the analytical considerations. Our paper shows that the quasi-integrability concepts recently proposed in the context of modifications of the sine-Gordon model remain valid for perturbations of the NLS model.
Resumo:
This work addresses the solution to the problem of robust model predictive control (MPC) of systems with model uncertainty. The case of zone control of multi-variable stable systems with multiple time delays is considered. The usual approach of dealing with this kind of problem is through the inclusion of non-linear cost constraint in the control problem. The control action is then obtained at each sampling time as the solution to a non-linear programming (NLP) problem that for high-order systems can be computationally expensive. Here, the robust MPC problem is formulated as a linear matrix inequality problem that can be solved in real time with a fraction of the computer effort. The proposed approach is compared with the conventional robust MPC and tested through the simulation of a reactor system of the process industry.
Resumo:
Background The paucity of studies regarding cognitive function in patients with chronic pain, and growing evidence regarding the cognitive effects of pain and opioids on cognitive function prompted us to assess cognition via neuropsychological measurement in patients with chronic non-cancer pain treated with opioids. Methods In this cross-sectional study, 49 patients were assessed by Continuous Reaction Time, Finger Tapping, Digit Span, Trail Making Test-B and Mini-mental State Examination tests. Linear regressions were applied. Results Patients scored poorly in the Trail Making Test-B (mean?=?107.6?s, SD?=?61.0, cut-off?=?91?s); and adequately on all other tests. Several associations among independent variables and cognitive tests were observed. In the multiple regression analyses, the variables associated with statistically significant poor cognitive performance were female sex, higher age, lower annual income, lower schooling, anxiety, depression, tiredness, lower opioid dose, and more than 5?h of sleep the night before assessment (P?<?0.05). Conclusions Patients with chronic pain may have cognitive dysfunction related to some reversible factors, which can be optimized by therapeutic interventions.
Resumo:
Background: Coronary artery calcification (CAC) and low bone density are coexisting deleterious conditions commonly shared by chronic kidney disease (CKD) patients. In the present study, we aimed to investigate whether the progression of CAC was associated with overtime reduction in bone density in non-dialyzed CKD patients. Methods: This is a prospective study of 24 months including 72 non-dialyzed CKD patients Stages 2 - 4 (age 57.6 +/- 10.3 years, 62% male, 22% diabetics). CAC and vertebral bone density (VBD) were measured by computed tomography. Results: At baseline, 46% of the patients had CAC (calcified group) and calcification was not identified in 54% of the patients (non-calcified group). The calcified group was older, predominantly male, and had lower VBD in comparison to non-calcified group. CAC progression was observed only in the calcified group (91% of the patients increased calcium score). The multiple regression analysis revealed loss of VBD as the independent determinant of CAC progression in these patients. Conclusion: CAC progression was associated with loss of VBD in non-dialyzed CKD patients.
Resumo:
Network reconfiguration for service restoration (SR) in distribution systems is a complex optimization problem. For large-scale distribution systems, it is computationally hard to find adequate SR plans in real time since the problem is combinatorial and non-linear, involving several constraints and objectives. Two Multi-Objective Evolutionary Algorithms that use Node-Depth Encoding (NDE) have proved able to efficiently generate adequate SR plans for large distribution systems: (i) one of them is the hybridization of the Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) with NDE, named NSGA-N; (ii) the other is a Multi-Objective Evolutionary Algorithm based on subpopulation tables that uses NDE, named MEAN. Further challenges are faced now, i.e. the design of SR plans for larger systems as good as those for relatively smaller ones and for multiple faults as good as those for one fault (single fault). In order to tackle both challenges, this paper proposes a method that results from the combination of NSGA-N, MEAN and a new heuristic. Such a heuristic focuses on the application of NDE operators to alarming network zones according to technical constraints. The method generates similar quality SR plans in distribution systems of significantly different sizes (from 3860 to 30,880 buses). Moreover, the number of switching operations required to implement the SR plans generated by the proposed method increases in a moderate way with the number of faults.
Resumo:
The degradation behaviour of SnO(2)-based varistors (SCNCr) due to current pulses (8/20 mu s) is reported here for the first time in comparison with the ZnO-based commercial varistors (ZnO). Puncturing and/or cracking failures were observed in ZnO-based varistors possessing inferior thermo-mechanical properties in comparison with that found in a SCNCr system free of failures. Both systems presented electric degradation related to the increase in the leakage current and decrease in the electric breakdown field, non-linear coefficient and average value of the potential barrier height. However, it was found that a more severe degradation occurred in the ZnO-based varistors concerning their non-ohmic behaviour, while in the SCNCr system, a strong non-ohmic behaviour remained after the degradation. These results indicate that the degradation in the metal oxide varistors is controlled by a defect diffusion process whose rate depends on the mobility, the concentration of meta-stable defects and the amount of electrically active interfaces. The improved behaviour of the SCNCr system is then inferred to be associated with the higher amount of electrically active interfaces (85%) and to a higher energy necessary to activate the diffusion of the specific defects.
Resumo:
Validity of comparisons between expected breeding values obtained from best linear unbiased prediction procedures in genetic evaluations is dependent on genetic connectedness among herds. Different cattle breeding programmes have their own particular features that distinguish their database structure and can affect connectedness. Thus, the evolution of these programmes can also alter the connectedness measures. This study analysed the evolution of the genetic connectedness measures among Brazilian Nelore cattle herds from 1999 to 2008, using the French Criterion of Admission to the group of Connected Herds (CACO) method, based on coefficients of determination (CD) of contrasts. Genetic connectedness levels were analysed by using simple and multiple regression analyses on herd descriptors to understand their relationship and their temporal trends from the 19992003 to the 20042008 period. The results showed a high level of genetic connectedness, with CACO estimates higher than 0.4 for the majority of them. Evaluation of the last 5-year period showed only a small increase in average CACO measures compared with the first 5 years, from 0.77 to 0.80. The percentage of herds with CACO estimates lower than 0.7 decreased from 27.5% in the first period to 16.2% in the last one. The connectedness measures were correlated with percentage of progeny from connecting sires, and the artificial insemination spread among Brazilian herds in recent years. But changes in connectedness levels were shown to be more complex, and their complete explanation cannot consider only herd descriptors. They involve more comprehensive changes in the relationship matrix, which can be only fully expressed by the CD of contrasts.
Resumo:
Detailed environmental land characterization is essential for technical and financial planning, for both the scientific point of view and technological application. This work aimed at the physiographic and pedological characterization and eucalyptus productivity mapping at Itatinga Forest Sciences Experimental Station (southeastern Brazil), using geographic information systems in order to identify possible cause-effect relationships between forest productivity and soil attributes. The digital cartographic dataset was structured as follows: as primary source of data, aerial photograph and field survey were used and, as a secondary source, topographical, geological and land use occupation maps were used. For mapping wood productivity at age six (MAI6, Mean Annual Increment), inventory data of permanent plots (same species, provenance and age) were used, which were obtained from Eucalyptus grandis plantations. Using simple linear correlation and backward stepwise multiple regression analysis, the dependent variable (MAI) was related with physical and chemical characteristics of the soils. Two standards of contour curves were identified, one with close curves, narrow and surrounding the drainage network, in the steeper and lower altitude areas; the other, with spaced contour lines, in the areas of higher altitude and with plane relief. Six types of soils were characterized as being highly related to the physiographic patterns of the area: loamy sandy to sandy clayey Typic Hapludox (LVAd, 47.5%), clayey Rhodic Hapludox (LVd1, 33.4%), sandy clay Rhodic Hapludox (LVd2, 6%), clayey Rhodic Hapludox (LVdf, 9.1%), Entisols (G, 3.4%) and Fluvents soil (RY, 0.6%). There were large variations in wood productivity in the Eucalyptus grandis plantations, characterized in six classes, ranging from 26 to 52 m(3) ha(-1) yr(-1). These productivity changes were strictly related to soil mapping units. Through multiple regression analysis, we found that clay and organic matter contents were the attributes which most strongly explained the productivity differences.
Resumo:
RATIONALE: The interaction between lungs and chest wall influences lung volume, that determines lung history during respiration cycle. In this study, the influence of chest wall mechanics on respiratory system is assessed by the evaluation of inspiration pressure-volume curve (PV curve) under three different situations: closed-chest, open-chest and isolated lung. The PV curve parameters in each situation allow us to further understand the role played by different chest wall elements in the respiratory function. Methods: Twenty-four male Wistar rats (236 ± 29 g) were used. The animals were weighted and then anesthetized with xylazine 2% (O,SmL/kg) and ketamine 10% (0,9mL/kg), exsanguinated and later tracheostomies with a metallic cannula (14 gauge).The cannula was connected to an automatic small animal insufflator. This setup was connected to a pressure transducer (32 samples/s). The 24 animals were randomly separated in three groups:(i) closed chest,(ii) open chest and (iii) isolated lung. The rats were insufflated with 20mL quasi-statically (constant speed of 0,1mUs). lnsufflated volume and measured pressure data were kept and PV curves were obtained for all animals. The PV curves were fitted (non-linear least squares) against the sigmoid equation (1) to obtain the sigmoid equation parameters (a,b,c,d). Elastance measurements were obtained from linear regression of pressure/volume measurements in a 0,8s interval before and after the calculated point. Results: The parameters a,b and c showed no significant change, but the parameter d showed a significant variation among the three groups. The initial elastance also varied between open and closed chest, indicating the need of a higher pressure for the lung expansion, as can be seen in Table 1. Conclusion: A supporting effect of the chest wall was observed at the initial moments of inspiration, observed as a higher initial elastance in open chest situations than in closed chest situations (p=0,00001). The similar initial elastance for the isolated lung and closed chest may be explained by the specific method used for the isolated lung experiment. As the isolated lung is supported by the trachea vertically, the weight of the tissue may have a similar effect of the residual negative pressure in the thorax, responsible for maintaining the residual volume.
Resumo:
RATIONALE: The interaction between lungs and chest wall influences lung volume, that determines lung history during respiration cycle. In this study, the influence of chest wall mechanics on respiratory system is assessed by the evaluation of inspiration pressure-volume curve (PV curve) under three different situations: closed-chest, open-chest and isolated lung. The PV curve parameters in each situation allow us to further understand the role played by different chest wall elements in the respiratory function. Methods: Twenty-four male Wistar rats (236 ± 29 g) were used. The animals were weighted and then anesthetized with xylazine 2% (0,5mL/kg) and ketamine 10% (0,9mL/kg), exsanguinated and later tracheostomized with a metallic cannula (14 gauge). The cannula was connected to an automatic small animal insufflator. This setup was connected to a pressure transducer (32 samples/s). The 24 animals were randomly separated in three groups: (i) closed chest, (ii) open chest and (iii) isolated lung. The rats were insufflated with 20mL quasi-statically (constant speed of 0,1mL/s). Insufflated volume and measured pressure data were kept and PV curves were obtained for all animals. The PV curves were fitted (non-linear least squares) against the sigmoid equation (1) to obtain the sigmoid equation parameters (a,b,c,d). Elastance measurements were obtained from linear regression of pressure/volume measurements in a 0,8s interval before and after the calculated point. Results: The parameters a, b and c showed no significant change, but the parameter d showed a significant variation among the three groups. The initial elastance also varied between open and closed chest, indicating the need of a higher pressure for the lung expansion, as can be seen in Table 1. Table 1: Mean and Standard Deviation of parameters obtained for each protocol. Protocol: Closed Chest – a (mL) -0.35±0.33; b (mL) 13.93±0.89; c (cm H2O) 21.28±2.37; d (cm H2O) 6.17±0.84; r²** (%) 99.4±0.14; Initial Elastance* (cm H2)/mL) 12.72±6.66; Weight (g) 232.33±5.72. Open Chest - a (mL) 0.01±0.28; b (mL) 14.79±0.54; c (cm H2O) 19.47±1.41; d (cm H2O) 3.50±0.28; r²** (%) 98.8±0.34; Initial Elastance* (cm H2)/mL) 28.68±2.36; Weight (g) 217.33±7.97. Isolated Lung - a (mL) -0.09±0.46; b (mL) 14.22±0.75; c (cm H2O) 21.76±1.43; d (cm H2O) 4.24±0.50; r²** (%) 98.9±0.19; Initial Elastance* (cm H2)/mL) 7.13±8.85; Weight (g) 224.33±16.66. * Elastance measures in the 0-0,1 mL range. ** Goodness of sigmoid fit versus measured data Conclusion: A supporting effect of the chest wall was observed at the initial moments of inspiration, observed as a higher initial elastance in open chest situations than in closed chest situations (p=0,00001). The similar initial elastance for the isolated lung and closed chest may be explained by the specific method used for the isolated lung experiment. As the isolated lung is supported by the trachea vertically, the weight of the tissue may have a similar effect of the residual negative pressure in the thorax, responsible for maintaining the residual volume.