6 resultados para Nilpotent Semigroup

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The global attractor of a gradient-like semigroup has a Morse decomposition. Associated to this Morse decomposition there is a Lyapunov function (differentiable along solutions)-defined on the whole phase space- which proves relevant information on the structure of the attractor. In this paper we prove the continuity of these Lyapunov functions under perturbation. On the other hand, the attractor of a gradient-like semigroup also has an energy level decomposition which is again a Morse decomposition but with a total order between any two components. We claim that, from a dynamical point of view, this is the optimal decomposition of a global attractor; that is, if we start from the finest Morse decomposition, the energy level decomposition is the coarsest Morse decomposition that still produces a Lyapunov function which gives the same information about the structure of the attractor. We also establish sufficient conditions which ensure the stability of this kind of decomposition under perturbation. In particular, if connections between different isolated invariant sets inside the attractor remain under perturbation, we show the continuity of the energy level Morse decomposition. The class of Morse-Smale systems illustrates our results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A loop is said to be automorphic if its inner mappings are automorphisms. For a prime p, denote by A(p) the class of all 2-generated commutative automorphic loops Q possessing a central subloop Z congruent to Z(p) such that Q/Z congruent to Z(p) x Z(p). Upon describing the free 2-generated nilpotent class two commutative automorphic loop and the free 2-generated nilpotent class two commutative automorphic p-loop F-p in the variety of loops whose elements have order dividing p(2) and whose associators have order dividing p, we show that every loop of A(p) is a quotient of F-p by a central subloop of order p(3). The automorphism group of F-p induces an action of GL(2)(p) on the three-dimensional subspaces of Z(F-p) congruent to (Z(p))(4). The orbits of this action are in one-to-one correspondence with the isomorphism classes of loops from A(p). We describe the orbits, and hence we classify the loops of A(p) up to isomorphism. It is known that every commutative automorphic p-loop is nilpotent when p is odd, and that there is a unique commutative automorphic loop of order 8 with trivial center. Knowing A(p) up to isomorphism, we easily obtain a classification of commutative automorphic loops of order p(3). There are precisely seven commutative automorphic loops of order p(3) for every prime p, including the three abelian groups of order p(3).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we discuss the existence of solutions for a class of abstract differential equations with nonlocal conditions for which the nonlocal term involves the temporal derivative of the solution. Some concrete applications to parabolic differential equations with nonlocal conditions are considered. (C) 2012 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper is dedicated to estimate the fractal dimension of exponential global attractors of some generalized gradient-like semigroups in a general Banach space in terms of the maximum of the dimension of the local unstable manifolds of the isolated invariant sets, Lipschitz properties of the semigroup and the rate of exponential attraction. We also generalize this result for some special evolution processes, introducing a concept of Morse decomposition with pullback attractivity. Under suitable assumptions, if (A, A*) is an attractor-repeller pair for the attractor A of a semigroup {T(t) : t >= 0}, then the fractal dimension of A can be estimated in terms of the fractal dimension of the local unstable manifold of A*, the fractal dimension of A, the Lipschitz properties of the semigroup and the rate of the exponential attraction. The ingredients of the proof are the notion of generalized gradient-like semigroups and their regular attractors, Morse decomposition and a fine analysis of the structure of the attractors. As we said previously, we generalize this result for some evolution processes using the same basic ideas. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We prove that the prime radical rad M of the free Malcev algebra M of rank more than two over a field of characteristic not equal 2 coincides with the set of all universally Engelian elements of M. Moreover, let T(M) be the ideal of M consisting of all stable identities of the split simple 7-dimensional Malcev algebra M over F. It is proved that rad M = J(M) boolean AND T(M), where J(M) is the Jacobian ideal of M. Similar results were proved by I. Shestakov and E. Zelmanov for free alternative and free Jordan algebras.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper is a continuation of Dokuchaev and Novikov (2010) [8]. The interaction between partial projective representations and twisted partial actions of groups considered in Dokuchaev and Novikov (2010) [8] is treated now in a categorical language. In the case of a finite group G, a structural result on the domains of factor sets of partial projective representations of G is obtained in terms of elementary partial actions. For arbitrary G we study the component pM'(G) of totally-defined factor sets in the partial Schur multiplier pM(G) using the structure of Exel's semigroup. A complete characterization of the elements of pM'(G) is obtained for algebraically closed fields. (C) 2011 Elsevier B.V. All rights reserved.