12 resultados para Ni-Co mixed oxides

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ordered mesoporous ZrO2-CeO2 mixed oxides are potential candidates for catalytic applications. These systems, used as anodes in solid oxide fuel cells (SOFC), may lead to better performance of SOFCs, due to an enhancement on surface area, aiming to achieve a lower working temperature. The aim of this studies is to evaluate the reduction capacity of Ni2+ to Ni in ZrO2-x(mol)%CeO2 (x=50 and 90) samples impregnated with 60(wt.)%NiO. The synthesis was made with Zr and Ce chloride precursors, HCl aqueous solution, Pluronic P123, NH4OH to adjust the pH (3-4) and a teflon autoclave to perform a hydrothermal treatment (80oC/48h). The samples were dried and calcined, until 540oC in N2 and 4 hours in air. The NiO impregnation was made with an ethanol dispersion of Ni(NO3)£6H2O. The powder was calcinated in air until 350oC for 2 hours. Temperature-resolved XANES data at the Ni K-edge were collected at the DXAS beam line of the LNLS in transmission mode, using a Si(111) monochromator and a CCD detector. Sample preparation consisted of mixing »6mg of the powder samples with boron nitride and pressing into pellets. The data were acquired during an experiment of temperature programmed reduction (TPR) under a 5% H2/He until 600oC and mixtures of 20%CH4:5%O2/He, at temperatures from 400 to 600oC. All the reactions were monitored with a mass spectrometer. The data was analyzed with a linear combination fit of 2 standards for each valence number using Athena software. The Ni K-edge experiments demonstrated that for both contents of CeO2, NiO embedded in the porous zirconia-ceria matrix reduces at lower temperatures than pure NiO, revealing that the ZrO2-CeO2 support improves the reduction of impregnated NiO. Ni was oxidized to NiO after all reactions with methane and oxygen. Hydrogenated carbonaceous species were detected, but under reducing conditions, the hydrocarbon compounds are removed. The reaction of total oxidation of methane CH4:O2 (1:2 ratio) was observed at lower temperatures (around 400oC) for both samples.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, catalysts containing 5 wt.% Ni deposited on a support composed of a CeO2-ZrO2 solid solution deposited on alumina were tested in the steam reforming of methane. The supports, with various ratios of Ce to Zr, were prepared by co-precipitation of the oxide precursors, followed by calcination in synthetic air. The catalysts were then prepared by Ni impregnation of the supports. The prepared solids were characterized by temperature-programmed reduction with H-2 (TPR-H-2), in situ X-ray diffraction (XRD) and X-ray absorption near-edge structure (XANES) spectroscopy. The XRD analysis confirmed the formation of a solid solution between ZrO2 and CeO2. In the catalytic tests, it was found that catalysts with higher Ce content did not exhibit deactivation during 6 h of reaction. The catalyst with highest Ce content, Ni(0.8Ce0.2Zr)AI, provided the best result, with the highest rate of conversion of methane and the lowest carbon deposition, which may be partly due to the smaller Ni-0 crystallites in this sample and also the segregated CeO2 particles may have favored H2O adsorption which could lead to higher C gasification. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The diffusive gradients in thin films (DGT) technique has shown enormous potential for labile metal monitoring in fresh water due to the preconcentration, time-integrated, matrix interference removal and speciation analytical features. In this work, the coupling of energy dispersive X-ray fluorescence (EDXRF) with paper-based DGT devices was evaluated for the direct determination of Mn, Co. Ni, Cu, Zn and Pb in fresh water. The DGT samplers were assembled with cellulose (Whatman 3 MM chromatography paper) as the diffusion layer and a cellulose phosphate ion exchange membrane (Whatman P 81 paper) as the binding agent. The diffusion coefficients of the analytes on 3 MM chromatography paper were calculated by deploying the DGT samplers in synthetic solutions containing 500 mu g L-1 of Mn. Co, Ni, Cu, Zn and Pb (4 L at pH 5.5 and ionic strength at 0.05 mol L-1). After retrieval, the DGT units were disassembled and the P81 papers were dried and analysed by EDXRF directly. The 3 MM chromatographic paper diffusion coefficients of the analytes ranged from 1.67 to 1.87 x 10(-6) cm(2) s(-1). The metal retention and phosphate group homogeneities on the P81 membrane was studied by a spot analysis with a diameter of 1 mm. The proposed approach (DGT-EDXRF coupling) was applied to determine the analytes at five sampling sites (48 h in situ deployment) on the Piracicaba river basin, and the results (labile fraction) were compared with 0.45 mu m dissolved fractions determined by synchrotron radiation-excited total reflection X-ray fluorescence (SR-TXRF). The limits of detection of DGT-EDXRF coupling for the analytes (from 7.5 to 26 mu g L-1) were similar to those obtained by the sensitive SR-TXRF technique (3.8 to 9.1 mu g L-1). (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Zirconia-ceria solid-solutions are extensively used as promoters for three-way catalysts, which are applied in the control of NOx, CO and hydrocarbons emission from automotive exhausts. In addition, thesematerials can be used as anodes in solid oxide fuel cells (SOFCs) operated with hydrocarbons. There areonly few works on ZrO2-CeO2 ordered mesoporous materials for catalytic applications and for anodes inSOFCs. The interest in these anodes relies on the fact that ZrO2-CeO2materials are mixed ionic/electronic conductors in reducing atmosphere and, therefore, fuel oxidation is produced on its entire surface, while it only occurs in the [anode/electrolyte/gas] interface (triple-phase boundaries) for electronic conductors. In this work, a synthesis method was developed usingZr and Ce chloride precursors, HCl aqueous solution, Pluronic P123 as the structure directing agent, NH4OH to adjust the pH (3-4) and a Teflon autoclave to perform hydrothermal treatment (80ºC/48 hours). The samples were dried and calcined, until 540ºC in N2and 4 hours in air. The X-ray diffraction data showed that powders with higher CeO2 content are formed by a larger fraction of the cubic CeO2 phase, while for a lower CeO2content the major crystalline structure is the tetragonal ZrO2 phase. The NiO impregnation was made with an ethanol dispersion of Ni(NO3)×6H2O. The resulting powder was calcinated in air until 350ºC for 2 hours. Temperature-programmed reduction (TPR) data were collected in order to evaluate the reduction profiles of ZrO2-x%CeO2:Ni samples in H2/Ar atmosphere. Results showed lower reduction temperatures for all ceria content in samples comparing to a NiO standard.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sugarcane-breeding programs take at least 12 years to develop new commercial cultivars. Molecular markers offer a possibility to study the genetic architecture of quantitative traits in sugarcane, and they may be used in marker-assisted selection to speed up artificial selection. Although the performance of sugarcane progenies in breeding programs are commonly evaluated across a range of locations and harvest years, many of the QTL detection methods ignore two- and three-way interactions between QTL, harvest, and location. In this work, a strategy for QTL detection in multi-harvest-location trial data, based on interval mapping and mixed models, is proposed and applied to map QTL effects on a segregating progeny from a biparental cross of pre-commercial Brazilian cultivars, evaluated at two locations and three consecutive harvest years for cane yield (tonnes per hectare), sugar yield (tonnes per hectare), fiber percent, and sucrose content. In the mixed model, we have included appropriate (co)variance structures for modeling heterogeneity and correlation of genetic effects and non-genetic residual effects. Forty-six QTLs were found: 13 QTLs for cane yield, 14 for sugar yield, 11 for fiber percent, and 8 for sucrose content. In addition, QTL by harvest, QTL by location, and QTL by harvest by location interaction effects were significant for all evaluated traits (30 QTLs showed some interaction, and 16 none). Our results contribute to a better understanding of the genetic architecture of complex traits related to biomass production and sucrose content in sugarcane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transition-metal (TM)-doped diluted magnetic oxides (DMOs) have attracted attention from both experimental and theoretical points of view due to their potential use in spintronics towards new nanostructured devices and new technologies. In the present work, we study the magnetic properties of Sn0.96TM0.04O2 and Sn0.96TM0.04O1.98(V (O))(0.02), where TM = Fe and Co, focusing in particular in the role played by the presence of O vacancies nearby the TM. The calculated total energy as a function of the total magnetic moment per cell shows a magnetic metastability, corresponding to a ground state, respectively, with 2 and 1 mu(B)/cell, for Fe and Co. Two metastable states, with 0 and 4 mu(B)/cell were found for Fe, and a single value, 3 mu(B)/cell, for Co. The spin-crossover energies (E (S)) were calculated. The values are E (S) (0/2) = 107 meV and E (S) (4/2) = 25 meV for Fe. For Co, E (S) (3/1) = 36 meV. By creating O vacancies close to the TM site, we show that the metastablity and E (S) change. For iron, a new state appears, and the state with zero magnetic moment disappears. The ground state is 4 mu(B)/cell instead of 2 mu(B)/cell, and the energy E (S) (2/4) is 30 meV. For cobalt, the ground state is then found with 3 mu(B)/cell and the metastable state with 1 mu(B)/cell. The spin-crossover energy E (S) (1/3) is 21 meV. Our results suggest that these materials may be used in devices for spintronic applications that require different magnetization states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Improving the charge capacity, electrochemical reversibility and stability of anode materials are main challenges for the development of Ni-based rechargeable batteries and devices. The combination of cobalt, as additive, and electrode material nanostructuration revealed a very promising approach for this purpose. The new alpha-NiCo mixed hydroxide based electrodes exhibited high specific charge/discharge capacity (355-714 C g(-1)) and outstanding structural stability, withstanding up to 700 redox cycles without any significant phase transformation, as confirmed by cyclic voltammetry, electrochemical quartz crystal microbalance and X-ray diffractometry. In short, the nanostructured alpha-NiCo mixed hydroxide materials possess superior electrochemical properties and stability, being strong candidates for application in high performance batteries and devices. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Catalysts containing mixtures of NiO, MgO and ZrO2 were synthesized by the polymerization method. They were characterized by X-ray diffraction (XRD), physisorption of N-2 (BET), X-ray photoelectron spectroscopy (XPS) and X-ray absorption near-edge structure (XANES), and then tested in the partial oxidation of methane (POM) in the presence of air (2CH(4):1O(2)) at 750 degrees C for 6 h. Among the ternary oxides, the catalyst with 40 mol% MgO showed the highest conversion rates in the catalytic processes, but also the highest carbon deposition values (48 mmol h (1)). The greater the amount of NiO-MgO solid solution formed, the higher was the conversion rate of reactants (CH4), peaking at 40 mol% of MgO. Catalysts with lower Ni content on the surface achieved a high rate of CH4 conversion into synthesis gas (H-2 + CO). The formation of more NiO-MgO solid solution seemed to inhibit the deactivation of Ni degrees during reaction. The values of the H-2/CO product ratio were generally found to be slightly lower than stoichiometric. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introducing nitrogen-fixing tree species in fast-growing eucalypt plantations has the potential to improve soil nitrogen availability compared with eucalypt monocultures. Whether or not the changes in soil nutrient status and stand structure will lead to mixtures that out-yield monocultures depends on the balance between positive interactions and the negative effects of interspecific competition, and on their effect on carbon (C) uptake and partitioning. We used a C budget approach to quantify growth, C uptake and C partitioning in monocultures of Eucalyptus grandis (W. Hill ex Maiden) and Acacia mangium (Willd.) (treatments E100 and A100, respectively), and in a mixture at the same stocking density with the two species at a proportion of 1 : 1 (treatment MS). Allometric relationships established over the whole rotation, and measurements of soil CO2 efflux and aboveground litterfall for ages 4-6 years after planting were used to estimate aboveground net primary production (ANPP), total belowground carbon flux (TBCF) and gross primary production (GPP). We tested the hypotheses that (i) species differences for wood production between E. grandis and A. mangium monocultures were partly explained by different C partitioning strategies, and (ii) the observed lower wood production in the mixture compared with eucalypt monoculture was mostly explained by a lower partitioning aboveground. At the end of the rotation, total aboveground biomass was lowest in A100 (10.5 kg DM m(-2)), intermediate in MS (12.2 kg DM m(-2)) and highest in E100 (13.9 kg DM m(-2)). The results did not support our first hypothesis of contrasting C partitioning strategies between E. grandis and A. mangium monocultures: the 21% lower growth (delta B-w) in A100 compared with E100 was almost entirely explained by a 23% lower GPP, with little or no species difference in ratios such as TBCF/GPP, ANPP/TBCF, delta B-w/ANPP and delta B-w/GPP. In contrast, the 28% lower delta B-w in MS than in E100 was explained both by a 15% lower GPP and by a 15% lower fraction of GPP allocated to wood growth, thus partially supporting our second hypothesis: mixing the two species led to shifts in C allocations from above- to belowground, and from growth to litter production, for both species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the key objectives in fuel cell technology is to reduce Pt loading by the improvement of its catalytic activity towards alcohol oxidation. Here, a sol-gel based method was used to prepare ternary and quaternary carbon supported nanoparticles by combining Pt-Ru with Mo, Ta, Pb, Rh or Ir, which were used as electro-catalysts for the methanol and ethanol oxidation reactions in acid medium. Structural characterization performed by XRD measurements revealed that crystalline structures with crystallites ranging from 2.8 to 4.1 nm in size and with different alloy degrees were produced. Tantalum and lead deposited as a heterogeneous mixture of oxides with different valences resulting in materials with complex structures. The catalysts activities were evaluated by cyclic voltammetry and by Tafel plots and the results showed that the activity towards methanol oxidation was highly dependent of the alloy degree, while for ethanol the presence of a metal capable to promote the break of C-C bond, such as Rh, was necessary for a good performance. Additionally, the catalysts containing of TaOx or PbOx resulted in the best materials due to different effects: the hi-functional mechanism promoted by TaOx and a better dispersion of the catalysts constituents promoted by PbOx. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Catalysts containing 10%Co supported on CexZr1-xO2 (0 < x < 1) were applied to ethanol steam reforming reactions. The catalysts were characterized by Raman spectroscopy, XANES-H-2 and DRS-UV-Vis. The catalytic tests were conducted at 673, 773 and 873 K, with molar ratios of H2O:ethanol = 3:1. The ethanol conversion and H-2 selectivity were temperature dependent and the association of CeO2 with ZrO2 in the support led to show a low formation of CO, due to the higher mobility of oxygen. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The generalized finite element method (GFEM) is applied to a nonconventional hybrid-mixed stress formulation (HMSF) for plane analysis. In the HMSF, three approximation fields are involved: stresses and displacements in the domain and displacement fields on the static boundary. The GFEM-HMSF shape functions are then generated by the product of a partition of unity associated to each field and the polynomials enrichment functions. In principle, the enrichment can be conducted independently over each of the HMSF approximation fields. However, stability and convergence features of the resulting numerical method can be affected mainly by spurious modes generated when enrichment is arbitrarily applied to the displacement fields. With the aim to efficiently explore the enrichment possibilities, an extension to GFEM-HMSF of the conventional Zienkiewicz-Patch-Test is proposed as a necessary condition to ensure numerical stability. Finally, once the extended Patch-Test is satisfied, some numerical analyses focusing on the selective enrichment over distorted meshes formed by bilinear quadrilateral finite elements are presented, thus showing the performance of the GFEM-HMSF combination.