17 resultados para Network structure

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Despite recognition of key biotic processes in shaping the structure of biological communities, few empirical studies have explored the influences of abiotic factors on the structural properties of mutualistic networks. We tested whether temperature and precipitation contribute to temporal variation in the nestedness of mutualistic ant-plant networks. While maintaining their nested structure, nestedness increased with mean monthly precipitation and, particularly, with monthly temperature. Moreover, some species changed their role in network structure, shifting from peripheral to core species within the nested network. We could summarize that abiotic factors affect plant species in the vegetation (e.g., phenology), meaning presence/absence of food sources, consequently an increase/decrease of associations with ants, and finally, these variations to fluctuations in nestedness. While biotic factors are certainly important, greater attention needs to be given to abiotic factors as underlying determinants of the structures of ecological networks.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Glasses in the system [Na2S](2/3)[(B2S3)(x)(P2S5)(1-x)](1/3) (0.0 <= x <= 1.0) were prepared by the melt quenching technique, and their properties were characterized by thermal analysis and impedance spectroscopy. Their atomic-level structures were comprehensively characterized by Raman spectroscopy and B-11, P-31, and Na-23 high resolution solid state magic-angle spinning (MAS) NMR techniques. P-31 MAS NMR peak assignments were made by the presence or absence of homonuclear indirect P-31-P-31 spin-spin interactions as detected using homonuclear J-resolved and refocused INADEQUATE techniques. The extent of B-S-P connectivity in the glassy network was quantified by P-31{B-11} and B-11{P-31} rotational echo double resonance spectroscopy. The results clearly illustrate that the network modifier alkali sulfide, Na2S, is not proportionally shared between the two network former components, B and P. Rather, the thiophosphate (P) component tends to attract a larger concentration of network modifier species than predicted by the bulk composition, and this results in the conversion of P2S74-, pyrothiophosphate, Na/P = 2:1, units into PS43-, orthothiophosphate, Na/P = 3:1, groups. Charge balance is maintained by increasing the net degree of polymerization of the thioborate (B) units through the formation of covalent bridging sulfur (BS) units, B S B. Detailed inspection of the B-11 MAS NMR spectra reveals that multiple thioborate units are formed, ranging from neutral BS3/2 groups all the way to the fully depolymerized orthothioborate (BS33-) species. On the basis of these results, a comprehensive and quantitative structural model is developed for these glasses, on the basis of which the compositional trends in the glass transition temperatures (T-g) and ionic conductivities can be rationalized. Up to x = 0.4, the dominant process can be described in a simplified way by the net reaction equation P-1 + B-1 reversible arrow P-0 + B-4, where the superscripts denote the number of BS atoms for the respective network former species. Above x = 0.4, all of the thiophosphate units are of the P-0 type and both pyro-(B-1) and orthothioborate (B-0) species make increasing contributions to the network structure with increasing x. In sharp contrast to the situation in sodium borophosphate glasses, four-coordinated thioborate species are generally less abundant and heteroatomic B-S-P linkages appear to not exist. On the basis of this structural information, compositional trends in the ionic conductivities are discussed in relation to the nature of the charge-compensating anionic species and the spatial distribution of the charge carriers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Antagonistic interactions between host plants and mistletoes often form complex networks of interacting species. Adequate characterization of network organization requires a combination of qualitative and quantitative data. Therefore, we assessed the distribution of interactions between mistletoes and hosts in the Brazilian Pantanal and characterized the network structure in relation to nestedness and modularity. Interactions were highly asymmetric, with mistletoes presenting low host specificity (i.e., weak dependence) and with hosts being highly susceptible to mistletoe-specific infections. We found a non-nested and modular pattern of interactions, wherein each mistletoe species interacted with a particular set of host species. Psittacanthus spp. infected more species and individuals and also caused a high number of infections per individual, whereas the other mistletoes showed a more specialized pattern of infection. For this reason, Psittacanthus spp. were regarded as module hubs while the other mistletoe species showed a peripheral role. We hypothesize that this pattern is primarily the result of different seed dispersal systems. Although all mistletoe species in our study are bird dispersed, the frugivorous assemblage of Psittacanthus spp. is composed of a larger suite of birds, whereas Phoradendron are mainly dispersed by Euphonia species. The larger assemblage of bird species dispersing Psittacanthus seeds may also increase the number of hosts colonized and, consequently, its dominance in the study area. Nevertheless, other restrictions on the interactions among species, such as the differential capacity of mistletoe infections, defense strategies of hosts and habitat types, can also generate or enhance the observed pattern.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Patterns of species interactions affect the dynamics of food webs. An important component of species interactions that is rarely considered with respect to food webs is the strengths of interactions, which may affect both structure and dynamics. In natural systems, these strengths are variable, and can be quantified as probability distributions. We examined how variation in strengths of interactions can be described hierarchically, and how this variation impacts the structure of species interactions in predator-prey networks, both of which are important components of ecological food webs. The stable isotope ratios of predator and prey species may be particularly useful for quantifying this variability, and we show how these data can be used to build probabilistic predator-prey networks. Moreover, the distribution of variation in strengths among interactions can be estimated from a limited number of observations. This distribution informs network structure, especially the key role of dietary specialization, which may be useful for predicting structural properties in systems that are difficult to observe. Finally, using three mammalian predator-prey networks ( two African and one Canadian) quantified from stable isotope data, we show that exclusion of link-strength variability results in biased estimates of nestedness and modularity within food webs, whereas the inclusion of body size constraints only marginally increases the predictive accuracy of the isotope-based network. We find that modularity is the consequence of strong link-strengths in both African systems, while nestedness is not significantly present in any of the three predator-prey networks.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Financial markets can be viewed as a highly complex evolving system that is very sensitive to economic instabilities. The complex organization of the market can be represented in a suitable fashion in terms of complex networks, which can be constructed from stock prices such that each pair of stocks is connected by a weighted edge that encodes the distance between them. In this work, we propose an approach to analyze the topological and dynamic evolution of financial networks based on the stock correlation matrices. An entropy-related measurement is adopted to quantify the robustness of the evolving financial market organization. It is verified that the network topological organization suffers strong variation during financial instabilities and the networks in such periods become less robust. A statistical robust regression model is proposed to quantity the relationship between the network structure and resilience. The obtained coefficients of such model indicate that the average shortest path length is the measurement most related to network resilience coefficient. This result indicates that a collective behavior is observed between stocks during financial crisis. More specifically, stocks tend to synchronize their price evolution, leading to a high correlation between pair of stock prices, which contributes to the increase in distance between them and, consequently, decrease the network resilience. (C) 2012 American Institute of Physics. [doi:10.1063/1.3683467]

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To understand the regulatory dynamics of transcription factors (TFs) and their interplay with other cellular components we have integrated transcriptional, protein-protein and the allosteric or equivalent interactions which mediate the physiological activity of TFs in Escherichia coli. To study this integrated network we computed a set of network measurements followed by principal component analysis (PCA), investigated the correlations between network structure and dynamics, and carried out a procedure for motif detection. In particular, we show that outliers identified in the integrated network based on their network properties correspond to previously characterized global transcriptional regulators. Furthermore, outliers are highly and widely expressed across conditions, thus supporting their global nature in controlling many genes in the cell. Motifs revealed that TFs not only interact physically with each other but also obtain feedback from signals delivered by signaling proteins supporting the extensive cross-talk between different types of networks. Our analysis can lead to the development of a general framework for detecting and understanding global regulatory factors in regulatory networks and reinforces the importance of integrating multiple types of interactions in underpinning the interrelationships between them.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

1. A long-standing question in ecology is how natural populations respond to a changing environment. Emergent optimal foraging theory-based models for individual variation go beyond the population level and predict how its individuals would respond to disturbances that produce changes in resource availability. 2. Evaluating variations in resource use patterns at the intrapopulation level in wild populations under changing environmental conditions would allow to further advance in the research on foraging ecology and evolution by gaining a better idea of the underlying mechanisms explaining trophic diversity. 3. In this study, we use a large spatio-temporal scale data set (western continental Europe, 19682006) on the diet of Bonellis Eagle Aquila fasciata breeding pairs to analyse the predator trophic responses at the intrapopulation level to a prey population crash. In particular, we borrow metrics from studies on network structure and intrapopulation variation to understand how an emerging infectious disease [the rabbit haemorrhagic disease (RHD)] that caused the density of the eagles primary prey (rabbit Oryctolagus cuniculus) to dramatically drop across Europe impacted on resource use patterns of this endangered raptor. 4. Following the major RHD outbreak, substantial changes in Bonellis Eagles diet diversity and organisation patterns at the intrapopulation level took place. Dietary variation among breeding pairs was larger after than before the outbreak. Before RHD, there were no clusters of pairs with similar diets, but significant clustering emerged after RHD. Moreover, diets at the pair level presented a nested pattern before RHD, but not after. 5. Here, we reveal how intrapopulation patterns of resource use can quantitatively and qualitatively vary, given drastic changes in resource availability. 6. For the first time, we show that a pathogen of a prey species can indirectly impact the intrapopulation patterns of resource use of an endangered predator.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract Background The organization of the connectivity between mammalian cortical areas has become a major subject of study, because of its important role in scaffolding the macroscopic aspects of animal behavior and intelligence. In this study we present a computational reconstruction approach to the problem of network organization, by considering the topological and spatial features of each area in the primate cerebral cortex as subsidy for the reconstruction of the global cortical network connectivity. Starting with all areas being disconnected, pairs of areas with similar sets of features are linked together, in an attempt to recover the original network structure. Results Inferring primate cortical connectivity from the properties of the nodes, remarkably good reconstructions of the global network organization could be obtained, with the topological features allowing slightly superior accuracy to the spatial ones. Analogous reconstruction attempts for the C. elegans neuronal network resulted in substantially poorer recovery, indicating that cortical area interconnections are relatively stronger related to the considered topological and spatial properties than neuronal projections in the nematode. Conclusion The close relationship between area-based features and global connectivity may hint on developmental rules and constraints for cortical networks. Particularly, differences between the predictions from topological and spatial properties, together with the poorer recovery resulting from spatial properties, indicate that the organization of cortical networks is not entirely determined by spatial constraints.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The design of a network is a solution to several engineering and science problems. Several network design problems are known to be NP-hard, and population-based metaheuristics like evolutionary algorithms (EAs) have been largely investigated for such problems. Such optimization methods simultaneously generate a large number of potential solutions to investigate the search space in breadth and, consequently, to avoid local optima. Obtaining a potential solution usually involves the construction and maintenance of several spanning trees, or more generally, spanning forests. To efficiently explore the search space, special data structures have been developed to provide operations that manipulate a set of spanning trees (population). For a tree with n nodes, the most efficient data structures available in the literature require time O(n) to generate a new spanning tree that modifies an existing one and to store the new solution. We propose a new data structure, called node-depth-degree representation (NDDR), and we demonstrate that using this encoding, generating a new spanning forest requires average time O(root n). Experiments with an EA based on NDDR applied to large-scale instances of the degree-constrained minimum spanning tree problem have shown that the implementation adds small constants and lower order terms to the theoretical bound.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies of consumer-resource interactions suggest that individual diet specialisation is empirically widespread and theoretically important to the organisation and dynamics of populations and communities. We used weighted networks to analyze the resource use by sea otters, testing three alternative models for how individual diet specialisation may arise. As expected, individual specialisation was absent when otter density was low, but increased at high-otter density. A high-density emergence of nested resource-use networks was consistent with the model assuming individuals share preference ranks. However, a density-dependent emergence of a non-nested modular network for core resources was more consistent with the competitive refuge model. Individuals from different diet modules showed predictable variation in rank-order prey preferences and handling times of core resources, further supporting the competitive refuge model. Our findings support a hierarchical organisation of diet specialisation and suggest individual use of core and marginal resources may be driven by different selective pressures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Social networks are static illustrations of dynamic societies, within which social interactions are constantly changing. Fundamental sources of variation include ranging behaviour and temporal demographic changes. Spatiotemporal dynamics can favour or limit opportunities for individuals to interact, and then a network may not essentially represent social processes. We examined whether a social network can embed such nonsocial effects in its topology, whereby emerging modules depict spatially or temporally segregated individuals. To this end, we applied a combination of spatial, temporal and demographic analyses to a long-term study of the association patterns of Guiana dolphins, Sotalia guianensis. We found that association patterns are organized into a modular social network. Space use was unlikely to reflect these modules, since dolphins' ranging behaviour clearly overlapped. However, a temporal demographic turnover, caused by the exit/entrance of individuals (most likely emigration/immigration), defined three modules of associations occurring at different times. Although this factor could mask real social processes, we identified the temporal scale that allowed us to account for these demographic effects. By looking within this turnover period (32 months), we assessed fission-fusion dynamics of the poorly known social organization of Guiana dolphins. We highlight that spatiotemporal dynamics can strongly influence the structure of social networks. Our findings show that hypothetical social units can emerge due to the temporal opportunities for individuals to interact. Therefore, a thorough search for a satisfactory spatiotemporal scale that removes such nonsocial noise is critical when analysing a social system. (C) 2012 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper discusses the influence of fat type in the structure of ice cream, during its production by means of rheo-optical analysis. Fat plays an important part in the ice cream structure formation. It's responsible for the air stabilization, flavor release, texture and melting properties. The objective of this study was to use a rheological method to predict the fat network formation in ice cream with three types of fats (hydrogenated, low trans and palm fat). The three formulations were produced using the same methodology and ratio of ingredients. Rheo-optical measurements were taken before and after the ageing process, and the maximum compression force, overrun and melting profile were calculated in the finished product. The rheological analysis showed a better response from the ageing process from the hydrogenated fat, followed by the low trans fat. The formulation with palm fat showed greater differences between the three, where through the rheological tests a weaker destabilization of the fat globule membrane by the emulsifier was suggested. The overrun, texture measurements and meltdown profile has shown the distinction on the structure formation by the hydrogenated fat from the other fats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Birds that remove ectoparasites and other food material from their hosts are iconic illustrations of mutualistic-commensalistic cleaning associations. To assess the complex pattern of food resource use embedded in cleaning interactions of an assemblage of birds and their herbivorous mammal hosts in open habitats in Brazil, we used a network approach that characterized their patterns of association. Cleaning interactions showed a distinctly nested pattern, related to the number of interactions of cleaners and hosts and to the range of food types that each host species provided. Hosts that provided a wide range of food types (flies, ticks, tissue and blood, and organic debris) were attended by more species of cleaners and formed the core of the web. On the other hand, core cleaner species did not exploit the full range of available food resources, but used a variety of host species to exploit these resources instead. The structure that we found indicates that cleaners rely on cleaning interactions to obtain food types that would not be available otherwise (e.g., blood-engorged ticks or horseflies, wounded tissue). Additionally, a nested organization for the cleaner bird mammalian herbivore association means that both generalist and selective species take part in the interactions and that partners of selective species form an ordered subset of the partners of generalist species. The availability of predictable protein-rich food sources for birds provided by cleaning interactions may lead to an evolutionary pathway favoring their increased use by birds that forage opportunistically. Received 30 June 2011, accepted 10 November 2011.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transient and equilibrium properties of dynamics unfolding in complex systems can depend critically on specific topological features of the underlying interconnections. In this work, we investigate such a relationship with respect to the integrate-and-fire dynamics emanating from a source node and an extended network model that allows control of the small-world feature as well as the length of the long-range connections. A systematic approach to investigate the local and global correlations between structural and dynamical features of the networks was adopted that involved extensive simulations (one and a half million cases) so as to obtain two-dimensional correlation maps. Smooth, but diverse surfaces of correlation values were obtained in all cases. Regarding the global cases, it has been verified that the onset avalanche time (but not its intensity) can be accurately predicted from the structural features within specific regions of the map (i.e. networks with specific structural properties). The analysis at local level revealed that the dynamical features before the avalanches can also be accurately predicted from structural features. This is not possible for the dynamical features after the avalanches take place. This is so because the overall topology of the network predominates over the local topology around the source at the stationary state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glasses in the system xGeO(2)-(1-x)NaPO3 (0 <= x <= 0.50) were prepared by conventional melting quenching and characterized by thermal analysis, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and P-31 nuclear magnetic resonance (MAS NMR) techniques. The deconvolution of the latter spectra was aided by homonuclear J-resolved and refocused INADEQUATE techniques. The combined analyses of P-31 MAS NMR and O-1s XPS lineshapes, taking charge and mass balance considerations into account, yield the detailed quantitative speciations of the phosphorus, germanium, and oxygen atoms and their respective connectivities. An internally consistent description is possible without invoking the formation of higher-coordinated germanium species in these glasses, in agreement with experimental evidence in the literature. The structure can be regarded, to a first approximation, as a network consisting of P-(2) and P-(3) tetrahedra linked via four-coordinate germanium. As implied by the appearance of P-(3) units, there is a moderate extent of network modifier sharing between phosphate and germanate network formers, as expressed by the formal melt reaction P-(2) + Ge-(4) -> P-(3) + Ge-(3). The equilibrium constant of this reaction is estimated as K = 0.52 +/- 0.11, indicating a preferential attraction of network modifier by the phosphorus component. These conclusions are qualitatively supported by Raman spectroscopy as well as P-31{Na-23} and P-31{Na-23} rotational echo double resonance (REDOR) NMR results. The combined interpretation of O-1s XPS and P-31 MAS NMR spectra shows further that there are clear deviations from a random connectivity scenario: heteroatomic P-O-Ge linkages are favored over homoatomic P-O-P and Ge-O-Ge linkages.