6 resultados para Neodymium-doping

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we study the effect reduction in the density of dangling bond species D-0 states in rare-earth (RE) doped a-Si films as a function concentration for different RE-specimens. The films a-Si-1_(x) REx, RE=Y3+, Gd3+, Er3+, Lu3+) were prepared by co-sputtering and investigated by electron spin resonance (ESR) and Raman scattering experiments. According to our data the RE-doping reduces the ESR signal intensity of the D-0 states with an exponential dependence on the rare-concentration. Furthermore, the reduction produced by the magnetic rare-earths Gd3+ and Er3+ is remarkably greater than that caused by Y3+ and Lu3+, which led us to suggest an exchange-like coupling between the spin of the magnetic REs3+ and the spin of silicon neutral dangling bonds. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the high-resolution performance of the fragment separator FRS at GSI we have discovered 60 new neutron-rich isotopes in the atomic number range of 60 <= Z <= 78. The new isotopes were unambiguously identified in reactions with a U-238 beam impinging on a Be target at 1 GeV/nucleon. The production cross-section for the new isotopes have been measured down to the pico-barn level and compared with predictions of different model calculations. For elements above hafnium fragmentation is the dominant reaction mechanism which creates the new isotopes, whereas fission plays a dominant role for the production of the new isotopes up to thulium. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoplasmonics and metamaterials sciences are rapidly growing due to their contributions to photonic devices fabrication with applications ranging from biomedicine to photovoltaic cells. Noble metal nanoparticles incorporated into polymer matrix have great potential for such applications due to their distinctive optical properties. However, methods to indirectly incorporate metal nanoparticles into polymeric microstructures are still on demand. Here we report on the fabrication of two-photon polymerized microstructures doped with gold nanoparticles through an indirect doping process, so they do not interfere in the two-photon polymerization (2PP) process. Such microstructures present a strong emission, arising from gold nanoparticles fluorescence. The microstructures produced are potential candidates for nanoplasmonics and metamaterials devices applications and the nanoparticles production method can be applied in many samples, heated simultaneously, opening the possibility for large scale processes. (C) 2012 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is reported superconductivity in Nb5Ge3C0.3, an interstitial carbide compound. The temperature dependence of the electrical resistivity, ac-susceptibility, and heat capacity (HC) indicate that a bulk type-II superconductivity appears at T-C - 15.3 K. Magneto-resistance measurements suggest an upper critical field of B-C2 similar to 10.6 T and a coherence length of xi similar to 55 angstrom at zero temperature. Neutron diffraction analyzes locate the carbon atoms at the interstitial 2b site of the Mn5Si3 type-structure. Heat capacity data below T-C are well described by BCS theory. The size of the jump at T-C is in good agreement with the superconducting volume fraction observed in susceptibility measurements. A Debye temperature and Sommerfeld constant were also extracted from heat capacity data as 343 K and 34 mJ/mol K-2, respectively. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4730611]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The control of the properties of materials at the molecular level is pursued for many applications, especially those associated with nanostructures. In this paper, we show that the coordination compound [Ni(dmit)(2)], where (dmit) is the 1,3-dithiole-2-thione-4,5-dithiolate ligand, can induce doping of poly(2-methoxyaniline) (POMA) in molecularly ordered Langmuir and Langmuir-Blodgett (LB) films. Doping was associated with interactions between the components and the compression of the Langmuir film at the air-water interface, according to polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS) data. Taking these results together with in situ UV-Vis absorption measurements, we could identify the molecular groups involved in the interaction, including the way they were reoriented upon film compression. The Langmuir films were sufficiently stable to be transferred as Y-type LB films, while the hybrid POMA/[Ni(dmit)(2)] films remain doped in the solid state. As expected, the molecular charges affected the film morphology, as observed from combined atomic and electric force microscopy measurements. In summary, with adequate spectroscopy and microscopy tools we characterized molecular-level interactions, which may allow one to design molecular electronic devices with controlled electrical properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since its discovery, myostatin (MSTN) has been at the forefront of muscle therapy research because intrinsic mutations or inhibition of this protein, by either pharmacological or genetic means, result in muscle hypertrophy and hyperplasia. In addition to muscle growth, MSTN inhibition potentially disturbs connective tissue, leads to strength modulation, facilitates myoblast transplantation, promotes tissue regeneration, induces adipose tissue thermogenesis and increases muscle oxidative phenotype. It is also known that current advances in gene therapy have an impact on sports because of the illicit use of such methods. However, the adverse effects of these methods, their impact on athletic performance in humans and the means of detecting gene doping are as yet unknown. The aim of the present review is to discuss biosynthesis, genetic variants, pharmacological/genetic manipulation, doping and athletic performance in relation to the MSTN pathway. As will be concluded from the manuscript, MSTN emerges as a promising molecule for combating muscle wasting diseases and for triggering wide-ranging discussion in view of its possible use in gene doping.