7 resultados para Navegação - séc.16-17

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the last decades, the presence of methylmercury (MeHg) in the Amazon region of Brazil and its adverse human health effects have given rise to much concern. The biotransformation of MeHg occurs mainly through glutathione (GSH) in the bile mediated by conjugation with glutathione S-transferases (GST). Epidemiological evidence has shown that genetic polymorphisms may affect the metabolism of MeHg. The aim of this study was to evaluate the association between GST polymorphisms, GSH, and Hg levels in blood (B-Hg) and in hair (H-Hg) of an Amazon population chronically exposed to the metal through fish consumption. Blood and hair samples were collected from 144 volunteers (71 men, 73 women). B-Hg and H-Hg levels were determined by inductively coupled plasma-mass spectrometry, and GSH levels were evaluated by a spectrophotometric method. GSTM1 and T1 genotyping evaluation were carried out by multiplex polymerase chain reaction (PCR). Mean levels of B-Hg and H-Hg were 37.7 +/- 24.5 mu g/L and 10.4 +/- 7.4 mu g/g, respectively; GSH concentrations ranged from 0.52 to 2.89 mu M/ml of total blood. Distributions for GSTM1/T1, GSTM1/GSTT1*0, GSTM1*0/T1, and GSTM1*0/GSTT1*0 genotypes were 35.4, 22.2, 25.0, and 17.4%, respectively. GSTT1 genotype carriers presented lower levels of B-Hg and H-Hg when compared to other genotypes carriers. In addition, GSTM1*0/GSTT1*0 individuals presented higher Hg levels in blood and hair than subjects presenting any other genotypes. There appeared to be no evidence of an effect of polymorphisms on GSH levels. Therefore, our data suggest that GST polymorphisms may be associated with MeHg detoxification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Environmental tobacco smoke (ETS) leads to the death of 600,000 nonsmokers annually and is associated with disturbances in antioxidant enzyme capacity in the adult rodent brain. However, little is known regarding the influence of ETS on brain development. The aim of this study was to determine levels of malonaldehyde (MDA) and 3-nitrotyrosine (3-NT), as well as enzymatic antioxidant activities of glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferase (GST), and superoxide dismutase (SOD), in distinct brain structures. BALB/c mice were exposed to ETS twice daily for 1 h from postnatal day 5 through postnatal day 18. Acute exposure was performed for 1 h on postnatal day 18. Mice were euthanized either immediately (0) or 3 h after the last exposure. Immediately after an acute exposure there were higher GR and GST activities and MDA levels in the hippocampus, higher GPx and SOD activities in the prefrontal cortex, and higher GST activity and MDA levels in the striatum and cerebellum. Three hours later there was an increase in SOD activity and MDA levels in the hippocampus and a decrease in the activity of all enzymes in the prefrontal cortex. Immediately after final repeated exposure there were elevated levels of GST and GR activity and decreased GPx activity in the hippocampus. Moreover, a rise was found in GPx and GST activities in the prefrontal cortex and increased GST and GPx activity in the striatum and cerebellum, respectively. After 3 h the prefrontal cortex showed elevated GR and GST activities, and the striatum displayed enhanced GST activity. Data showed that enzymatic antioxidant system in the central nervous system responds to ETS differently in different regions of the brain and that a form of adaptation occurs after several days of exposure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cisplatin is a highly effective chemotherapeutic drug; however, its use is limited by nephrotoxicity. Studies showed that the renal injury produced by cisplatin involves oxidative stress and cell death mediated by apoptosis and necrosis in proximal tubular cells. The use of antioxidants to decrease cisplatin-induced renal cell death was suggested as a potential therapeutic measure. In this study the possible protective effects of carvedilol, a beta blocker with antioxidant activity, was examined against cisplatin-induced apoptosis in HK-2 human kidney proximal tubular cells. The mitochondrial events involved in this protection were also investigated. Four groups were used: controls (C), cisplatin alone at 25 mu M (CIS), cisplatin 25 mu M plus carvedilol 50 mu M (CV + CIS), and carvedilol alone 50 mu M (CV). Cell viability, apoptosis, caspase-9, and caspase-3 were determined. Data demonstrated that carvedilol effectively increased cell viability and minimized caspase activation and apoptosis in HK-2 cells, indicating this may be a promising drug to reduce nephrotoxicity induced by cisplatin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the dyeing process in baths approximately 10 to 15% of the dyes used are lost and reach industrial effluents, thus polluting the environment. Studies showed that some classes of dyes, mainly azo dyes and their by-products, exert adverse effects on humans and local biota, since the wastewater treatment systems and water treatment plants were found to be ineffective in removing the color and reducing toxicity of some dyes. In the present study, the toxicity of the azo dyes disperse orange 1 (DO1), disperse red 1 (DR1), and disperse red 13 (DR13) was evaluated in HepG2 cells grown in monolayers or in three dimensional (3D) culture. Hepatotoxicity of the dyes was measured using 3-(4,5-dimethylthiazol-2yl)2,5-diphenyltetrazolium (MTT) and cell counting kit 8 (CCK-8) assays after 24, 48, and 72 h of incubation of cells with 3 different concentrations of the azo dyes. The dye DO1 only reduced the mitochondrial activity in HepG2 cells grown in a monolayer after 72 h incubation, while the dye DR1 showed this deleterious effect in both monolayer and 3D culture. In contrast, dye DR13 decreased the mitochondrial activity after 24, 48, and 72 h of exposure in both monolayer and 3D culture. With respect to dehydrogenase activity, only the dye DR13 diminished the activity of this enzyme after 72 h of exposure in both monolayer and 3D culture. Our results clearly demonstrated that exposure to the studied dyes induced cytotoxicity in HepG2 cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chrysin is one of the natural flavonoids present in plants, and large amounts are present in honey and propolis. In addition to anticancer, antioxidation, and anti-inflammatory activities, chrysin has also been reported to be an inhibitor of aromatase, an enzyme converting testosterone into estrogen. The present study evaluated the mutagenicity of this flavonoid using micronucleus (MN) with HepG2 cells and Salmonella. Cell survival after exposure to different concentrations of chrysin was also determined using sulforhodamine B (SRB) colorimetric assay in HepG2 cells and the influence of this flavonoid on growth of cells in relation to the cell cycle and apoptosis. TheMN test showed that from 1 to 15 mu M of this flavonoid mutagenic activity was noted in HepG2 cells. The Salmonella assay demonstrated a positive response to the TA100 Salmonella strain in the presence or absence of S9, suggesting that this compound acted on DNA, inducing base pair substitution before or after metabolism via cytochrome P-450. The SRB assay illustrated that chrysin promoted growth inhibition of HepG2 cells in both periods studied (24 and 48 h). After 24 h of exposure it was noted that the most significant results were obtained with a concentration of 50 mu M, resulting in 83% inhibition and SubG0 percentage of 12%. After 48 h of incubation cell proliferation inhibition rates (97% at 50 mu M) were significantly higher. Our results showed that chrysin is a mutagenic and cytotoxic compound in cultured human HepG2 cells and Salmonella typhimurium. Although it is widely accepted that flavonoids are substances beneficial to health, one must evaluate the risk versus benefit relationship and concentrations of these substances to which an individual may be exposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As shown in numerous studies, natural compounds may exert adverse effects, mainly when associated with some drugs. The hydroalcoholic extract of Mikania glomerata is the pharmaceutical form present in commercially available syrup used for the treatment of respiratory diseases in popular Brazilian medicine. The objective of the present investigation was (1) to evaluate the preventive effects of standardized hydroalcoholic extract of M. glomerata (MEx) against antitumoral drug doxorubicin (DXR)-induced micronucleated polychromatic erythrocytes (MNPCE) in a subchronic assay in mice, and (2) to determine the liver content of malondialdehyde (MDA) and the antioxidants glutathione (GSH) and vitamin E (VE). Male Swiss mice were treated for 30 d with MEx added to drinking water, combined or not with DXR (90 mg/kg body weight) injected intraperitoneally (ip) 24 h before analysis. The results demonstrated that MEx produced no genotoxic damage, but significantly increased the frequency of MNPCE induced by DXR, indicating a drug-drug interaction. This rise was not accompanied by lipid peroxidation or antioxidants level reduction, as measured by MDA, GSH, and VE. Despite the presence of coumarin (a known antioxidant), MEx may exert adverse effects probably in association with mutagenic compounds, although this effect on DNA damage did not involve oxidative stress.