13 resultados para NUCLEOTIDE EXCISION
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Human cells are constantly exposed to DNA damage. Without repair, damage can result in genetic instability and eventually cancer. The strong association between the lack of DNA damage repair, mutations and cancer is dramatically demonstrated by a number of cancer-prone human syndromes, such as xeroderma pigmentosum (XP), ataxia-telangiectasia (AT) and Fanconi anemia (FA). This review focuses on the historical discoveries related with these three diseases and describes their impact on the understanding of DNA repair mechanisms and the causes of human cancer. As deficiencies in DNA repair are also often related with progeria symptoms, unrepaired damage and aging are somehow related. Several other pathologies associated with DNA repair defects, genetic instability and increased cancer risk are also discussed. In fact, studies with cells from these many syndromes have helped in understanding important levels of protection against cancer and aging, although little help has actually been conferred to the patients in terms of therapy. Finally, the recent advances in combined basic and translational research on DNA repair and chemotherapy are presented.
Resumo:
Doxorubicin (DOX) is an important tumor chemotherapeutic agent, acting mainly by genotoxic action. This work focus on cell processes that help cell survival, after DOX-induced DNA damage. In fact, cells deficient for XPA or DNA polymerase eta (pol eta, XPV) proteins (involved in distinct DNA repair pathways) are highly DOX-sensitive. Moreover, LY294002, an inhibitor of PIKK kinases, showed a synergistic killing effect in cells deficient in these proteins, with a strong induction of G2/M cell cycle arrest. Taken together, these results indicate that XPA and pol eta proteins participate in cell resistance to DOX-treatment, and kinase inhibitors can selectively enhance its killing effects, probably reducing the cell ability to recover from breaks induced in DNA. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
UVA light (320–400 nm) represents approximately 95% of the total solar UV radiation that reaches the Earth’s surface. UVA light induces oxidative stress and the formation of DNA photoproducts in skin cells. These photoproducts such as pyrimidine dimers (cyclobutane pyrimidine dimers, CPDs, and pyrimidine (6-4) pyrimidone photoproducts, 6-4PPs) are removed by nucleotide excision repair (NER). In this repair pathway, the XPA protein is recruited to the damage removal site; therefore, cells deficient in this protein are unable to repair the photoproducts. The aim of this study was to investigate the involvement of oxidative stress and the formation of DNA photoproducts in UVA-induced cell death. In fact, similar levels of oxidative stress and oxidised bases were detected in XP-A and NER-proficient cells exposed to UVA light. Interestingly, CPDs were detected in both cell lines; however, 6-4PPs were detected only in DNA repairdeficient cells. XP-A cells were also observed to be significantly more sensitive to UVA light compared to NER-proficient cells, with an increased induction of apoptosis, while necrosis was similarly observed in both cell lines. The induction of apoptosis and necrosis in XP-A cells using adenovirus-mediated transduction of specific photolyases was investigated and we confirm that both types of photoproducts are the primary lesions responsible for inducing cell death in XP-A cells and may trigger the skin-damaging effects of UVA light, particularly skin ageing and carcinogenesis.
Resumo:
DNA damage induced by ultraviolet (UV) radiation can be removed by nucleotide excision repair through two sub-pathways, one general (GGR) and the other specific for transcribed DNA (TCR), and the processing of unrepaired lesions trigger signals that may lead to cell death. These signals involve the tumor suppressor p53 protein, a central regulator of cell responses to DNA damage, and the E3 ubiquitin ligase Mdm2, that forms a feedback regulatory loop with p53. The involvement of cell cycle and transcription on the signaling to apoptosis was investigated in UVB-irradiated synchronized, DNA repair proficient, CS-B (TCR-deficient) and XP-C (GGR-deficient) primary human fibroblasts. Cells were irradiated in the G1 phase of the cell cycle, with two doses with equivalent levels of apoptosis (low and high), defined for each cell line. In the three cell lines, the low doses of UVB caused only a transient delay in progression to the S phase, whereas the high doses induced permanent cell cycle arrest. However, while accumulation of Mdm2 correlated well with the recovery from transcription inhibition at the low doses for normal and CS-B fibroblasts, for XP-C cells this protein was shown to be accumulated even at UVB doses that induced high levels of apoptosis. Thus, UVB-induced accumulation of Mdm2 is critical for counteracting p53 activation and apoptosis avoidance, but its effect is limited due to transcription inhibition. However, in the case of XP-C cells, an excess of unrepaired DNA damage would be sufficient to block S phase progression, which would signal to apoptosis, independent of Mdm2 accumulation. The data clearly discriminate DNA damage signals that lead to cell death, depending on the presence of UVB-induced DNA damage in replicating or transcribing regions.
Resumo:
Aims: To evaluate the associations of excision repair cross complementing-group 1 (ERCC1) (DNA repair protein) (G19007A) polymorphism, methylation and immunohistochemical expression with epidemiological and clinicopathological factors and with overall survival in head and neck squamous cell carcinoma (HNSCC) patients. Methods and results: The study group comprised 84 patients with HNSCC who underwent surgery and adjuvant radiotherapy without chemotherapy. Bivariate and multivariate analyses were used. The allele A genotype variant was observed in 79.8% of the samples, GG in 20.2%, GA in 28.6% and AA in 51.2%. Individuals aged more than 45 years had a higher prevalence of the allelic A variant and a high (83.3%) immunohistochemical expression of ERCC1 protein [odds ratio (OR) = 4.86, 95% confidence interval (CI): 1.2-19.7, P = 0.027], which was also high in patients with advanced stage (OR= 5.04, 95% CI: 1.07-23.7, P = 0.041). Methylated status was found in 51.2% of the samples, and was higher in patients who did not present distant metastasis (OR = 6.67, 95% CI: 1.40-33.33, P = 0.019) and in patients with advanced stage (OR = 5.04, 95% CI: 1.07-23.7, P = 0.041). At 2 and 5 years, overall survival was 55% and 36%, respectively (median = 30 months). Conclusion: Our findings may reflect a high rate of DNA repair due to frequent tissue injury during the lifetime of these individuals, and also more advanced disease presentation in this population with worse prognosis.
Resumo:
Systemic lupus erythematosus (SLE) is an autoimmune disease that results in inflammation and tissue damage. The etiology of SLE remains unknown, but recent studies have shown that the innate immune system may have a role in SLE pathogenesis through the secretion of small cationic peptides named defensins. The aim of the study was to determine the possible involvement in SLE of three functional single nucleotide polymorphisms (SNPs) (c.-52G>A, c.-44C>G and c.-20G>A) in the 5'UTR region of DEFB1 gene, by analyzing them in a population of 139 SLE patients and 288 healthy controls. The c.-52G>A SNP showed significant differences in allele and genotype frequency distribution between SLE patients and controls (p = 0.01 and p = 0.02 respectively) indicating protection against SLE (A allele, OR = 0.68, AA genotype OR = 0.51). Significant differences were also observed for c.-44C>G SNP, the C/G genotype being associated with susceptibility to SLE (OR = 1.60, p = 0.04). Moreover, statistically significant differences between patients and controls were found for two DEFB1 haplotypes (GCA and GGG, p = 0.01 and p = 0.02 respectively). When considering DEFB1 SNPs and SLE clinical and laboratory manifestations, significant association was found with neuropsychiatric disorders, immunological alterations and anti-DNA antibodies. In conclusion, our results evidence a possible role for the c.-52G>A and c.-44C>G DEFB1 polymorphisms in SLE pathogenesis, that can be considered as possible risk factors for development of disease and disease-related clinical manifestations. Additional studies are needed, to corroborate these results as well as functional studies to understand the biological role of these SNPs in the pathogenesis of SLE. Lupus (2012) 21, 625-631.
Resumo:
Given the important role of leptin in metabolism, we looked for a possible association of leptin and leptin receptor polymorphisms with carcass and growth traits in Nellore cattle. We examined associations of leptin and leptin receptor SNPs with ultrasound carcass (longissimus dorsi muscle area (ribeye area), backfat thickness and rump fat thickness and growth traits (weaning weight adjusted to 210 days of age, yearling weight adjusted to 550 days of age, weight gain of weaning to yearling and scrotal circumference adjusted to 550 days of age) of 2162 Bos primigenius indicus (Nellore) animals. Allele and genotypic frequencies were calculated for each marker. Allele substitution, additive and dominance effects of the polymorphisms were also evaluated. Some alleles of the molecular markers had low frequencies, lower than 1%, in the sample analyzed, although the same polymorphisms described for B. p. taurus cattle were found. Due to very low allelic frequencies, the E2JW, A59V and UASMS2 markers were not included in the analysis, because they were almost fixed. E2FB was found to be significantly associated with weight gain, ribeye area and backfat thickness. The promoter region markers, C963T and UASMS1, were also found to be significantly associated with ribeye area. T945M was significantly associated with weight gain. We conclude that the leptin and receptor gene markers would be useful for marker-assisted selection.
Resumo:
How is the corneal epithelium restored when all of it plus the limbus have been eliminated? This investigation explored the possibility that this may be achieved through the conjunctival epithelium. The corneal epithelium of the right eye of 12 rabbits (Oryctolagus cuniculus) was totally scraped followed by surgical excision of the limbus plus 1.0-1.5 mm of the adjacent conjunctiva. Antibiotics and corticosteroids were applied for 1 week after surgery. Histological and immunohistochemical techniques were used to monitor the events taking place on the eye surface 2 weeks and 1, 3 and 6 months thereafter. Initially, the corneal surface was covered by conjunctival-like epithelium. After 1 month and more prominently at 3 and 6 months an epithelium displaying the morphological features of the cornea and reacting with the AE5 antibody was covering the central region. It is likely that the corneal epithelium originated from undifferentiated cells of the conjunctiva interacting with the corneal stroma.
Resumo:
During the last century, great improvements have been made in rectal cancer management regarding preoperative staging, pathologic assessment, surgical technique, and multimodal therapies. Surgically, there was a move from a strategy characterized by simple perineal excision to complex procedures performed by means of a laparoscopic approach, and more recently with the aid of robotic systems. Perhaps the most important advance is that rectal cancer is no longer a fatal disease as it was at the beginning of the 20th century. This achievement is definitely due in part to Ernest Mile's contribution regarding lymphatic spread of tumor cells, which helped clarify the natural history of the disease and the proper treatment alternatives. He advocated a combined approach with the rationale to clear "the zone of upward spread." The aim of the present paper is to present a brief review concerning the evolution of rectal cancer surgery, focusing attention on Miles' abdominoperineal excision of the rectum (APR) and its controversies and refinements over time. Although APR has currently been restricted to a small proportion of patients with low rectal cancer, recent propositions to excise the rectum performing a wider perineal and a proper pelvic floor resection have renewed interest on this procedure, confirming that Ernest Miles' original ideas still influence rectal cancer management after more than 100 years.
Resumo:
Objective: To evaluate whether immunohistochemical marker studies performed on core needle biopsy (CNB) specimens accurately reflect the marker status of the tumor obtained from final surgical specimen. Methods: This was a retrospective study that used the database of the Division of Mastology of the Hospital das Clinicas, Sao Paulo, Brazil. Sixty-nine patients submitted to ultrasound-guided CNB diagnosed with breast cancer were retrospectively analyzed. Immunohistochemistry (IHC) on core biopsy specimens was compared to that of excisional biopsy regarding estrogen receptor (ER), progesterone receptor (PR), human epidermal gowth factor receptor 2 gene (HER2), p53, and Ki67. The analysis of the concordance between CNB and surgical biopsy was performed using the kappa (k) coefficient (95% CI). Results: A perfect concordance between the labeling in the surgical specimens and the preoperative biopsies in p53 (k = 1.0; 95% CI: 0.76-1.0) was identified. There was an almost perfect concordance for ER (k = 0.89; 95% CI: 0.65-1.0) and a substantial concordance for PR (k = 0.70; 95% CI: 0.46-0.93). HER2 (k = 0.61; 95% CI: 0.38-0.84) and Ki-67 (k = 0.74; 95% CI: 0.58-0.98) obtained a substantial concordance this analysis. Conclusion: The results of this study indicate that the immunohistochemical analysis of ER, PR, Ki-67, and p53 from core biopsy specimens provided results that accurately reflect the marker status of the tumor. The concordance rate of HER2 was less consistent; although it produced substantial concordance, values were very close to moderate concordance.
Resumo:
Emerging resistance to chloroquine (CQ) poses a major challenge for Plasmodium vivax malaria control, and nucleotide substitutions and copy number variation in the P. vivax multidrug resistance 1 (pvmdr-1) locus, which encodes a digestive vacuole membrane transporter, may modulate this phenotype. We describe patterns of genetic variation in pvmdr-1 alleles from Acre and Amazonas in northwestern Brazil, and compare then with those reported in other malaria-endemic regions. The pvmdr-1 mutation Y976F, which is associated with CQ resistance in Southeast Asia and Oceania, remains rare in northwestern Brazil (1.8%) and its prevalence mirrors that of CO resistance worldwide. Gene amplification of pvmdr-1, which is associated with mefloquine resistance but increased susceptibility to CO, remains relatively rare in northwestern Brazil (0.9%) and globally (< 4%), but became common (> 10%) in Tak Province, Thailand, possibly because of drug-mediated selection. The global database we have assembled provides a baseline for further studies of genetic variation in pvmdr-1 and drug resistance in P. vivax malaria.
Resumo:
Abstract Background Adult-type hypolactasia, the physiological decline of lactase some time after weaning, was previously associated with the LCT -13910C>T polymorphism worldwide except in Africa. Lactase non-persistence is the most common phenotype in humans, except in northwestern Europe with its long history of pastoralism and milking. We had previously shown association of LCT -13910C>T polymorphism with adult-type hypolactasia in Brazilians; thus, we assessed its frequency among different Brazilian ethnic groups. Methods We investigated the ethnicity-related frequency of this polymorphism in 567 Brazilians [mean age, 42.1 ± 16.8 years; 157 (27.7%) men]; 399 (70.4%) White, 50 (8.8%) Black, 65 (11.5%) Brown, and 53 (9.3%) Japanese-Brazilian. DNA was extracted from leukocytes; LCT -13910C>T polymorphism was analyzed by PCR-restriction fragment length polymorphism. Results Prevalence of the CC genotype associated with hypolactasia was similar (57%) among White and Brown groups; however, prevalence was higher among Blacks (80%) and those of Japanese descent (100%). Only 2 (4%) Blacks had TT genotype, and 8 (16%) had the CT genotype. Assuming an association between CC genotype and hypolactasia, and CT and TT genotypes with lactase persistence, 356 (62.8%) individuals had hypolactasia and 211 (37.2%) had lactase persistence. The White and Brown groups had the same hypolactasia prevalence (~57%); nevertheless, was 80% among Black individuals and 100% among Japanese-Brazilians (P < 0.01). Conclusion The lactase persistence allele, LCT -13910T, was found in about 43% of both White and Brown and 20% of the Black Brazilians, but was absent among all Japanese Brazilians studied.
Resumo:
Conflicting findings about the association between leprosy and TLR1 variants N248S and I602S have been reported. Here, we performed case-control and family based studies, followed by replication in 2 case-control populations from Brazil, involving 3162 individuals. Results indicated an association between TLR1 248S and leprosy in the case-control study (SS genotype odds ratio [OR], 1.81; P = .004) and the family based study (z = 2.02; P = .05). This association was consistently replicated in other populations (combined OR, 1.51; P < .001), corroborating the finding that 248S is a susceptibility factor for leprosy. Additionally, we demonstrated that peripheral blood mononuclear cells (PBMCs) carrying 248S produce a lower tumor necrosis factor/interleukin-10 ratio when stimulated with Mycobacterium leprae but not with lipopolysaccharide or PAM3cysK4. The same effect was observed after infection of PBMCs with the Moreau strain of bacillus Calmette-Guerin but not after infection with other strains. Finally, molecular dynamics simulations indicated that the Toll-like receptor 1 structure containing 248S amino acid is different from the structure containing 248N. Our results suggest that TLR1 248S is associated with an increased risk for leprosy, consistent with its hypoimmune regulatory function.