31 resultados para Muscle, Skeletal, Physiology

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The myotendinous junction (MTJ) is a major area for transmitting force from the skeletal muscle system and acts in joint position and stabilization. This study aimed to use transmission electron microscopy to describe the ultrastructural features of the MTJ of the sternomastoid muscle in Wistar rats from newborn to formation during adulthood and possible changes with aging. Ultrastructural features of the MTJ from the newborn group revealed pattern during development with interactions between muscle cells and extracellular matrix elements with thin folds in the sarcolemma and high cellular activity evidenced through numerous oval mitochondria groupings. The adult group had classical morphological features of the MTJ, with folds in the sarcolemma forming long projections called finger-like processes and sarcoplasmic invaginations. Sarcomeres were aligned in series, showing mitochondria near the Z line in groupings between collagen fiber bundles. The old group had altered finger-like processes, thickened in both levels of sarcoplasmic invaginations and in central connections with the lateral junctions. We conclude that the MTJ undergoes intense activity from newborn to its formation during adulthood. With increasing age, changes to the MTJ were observed in the shapes of the invaginations and finger-like processes due to hypoactivity, potentially compromising force transmission and joint stability. Microsc. Res. Tech. 75:12921296, 2012. (C) 2012 Wiley Periodicals, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High consumption of polyunsaturated fatty acids, such as sunflower oil has been associated to beneficial effects in plasma lipid profile, but its role on inflammation and insulin resistance is not fully elucidated yet. We evaluated the effect of sunflower oil supplementation on inflammatory state and insulin resistance condition in HFD-induced obese mice. C57BL/ 6 male mice (8 weeks) were divided in four groups: (a) control diet (CD), (b) HFD, (c) CD supplemented with n-6 (CD + n-6), and (d) HFD supplemented with n-6 (HFD + n-6). CD + n-6 and HFD + n-6 were supplemented with sunflower oil by oral gavage at 2 g/ Kg of body weight, three times per week. CD and HFD were supplemented with water instead at the same dose. HFD induced whole andmuscle-specific insulin resistance associated with increased inflammatory markers in insulin-sensitive tissues andmacrophage cells. Sunflower oil supplementation was not efficient in preventing or reducing these parameters. In addition, the supplementation increased pro-inflammatory cytokine production by macrophages and tissues. Lipid profile, on the other hand, was improved with the sunflower oil supplementation in animals fed HFD. In conclusion, sunflower oil supplementation improves lipid profile, but it does not prevent or attenuate insulin resistance and inflammation induced by HFD in C57BL/ 6 mice.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Study Objectives: To compare the components of the extracellular matrix in the lateral pharyngeal muscular wall in patients with and without obstructive sleep apnea (OSA). This may help to explain the origin of the increased collapsibility of the pharynx in patients with OSA. Design: Specimens from the superior pharyngeal constrictor muscle, obtained during pharyngeal surgeries, were evaluated using histochemical and immunohistochemical analyses to determine the fractional area of collagen types I and II, elastic fibers, versican, fibronectin, and matrix metalloproteinases 1 and 2 in the endomysium. Setting: Academic tertiary center. Patiens: A total of 51 nonobese adult patients, divided into 38 patients with OSA and 13 nonsnoring control subjects without OSA. Interventions: Postintervention study performed on tissues from patients after elective surgery. Measurements and Results: Pharyngeal muscles of patients with OSA had significantly more collagen type I than pharyngeal muscles in control subjects. Collagen type I was correlated positively and independently with age. The other tested components of the extracellular matrix did not differ significantly between groups. In a logistic regression, an additive effect of both the increase of collagen type I and the increase in age with the presence of OSA was observed (odds ratio (OR), 2.06; 95% confidence interval (CI), 1.17-3.63), when compared with the effect of increased age alone (OR, 1.11; 95% CI, 1.03-1.20). Conclusion: Collagen type I in the superior pharyngeal constrictor muscle was more prevalent in patients with OSA and also increased with age. It was hypothesized that this increase could delay contractile-relaxant responses in the superior pharyngeal constrictor muscle at the expiratory-inspiratory phase transition, thus increasing pharyngeal collapsibility.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The effect of short-term creatine (Cr) supplementation upon content of skeletal muscle-derived-reactive oxygen species (ROS) was investigated. Wistar rats were supplemented with Cr (5 g/kg BW) or vehicle, by gavage, for 6 days. Soleus and extensor digitorum longus (EDL) muscles were removed and incubated for evaluation of ROS content using Amplex-UltraRed reagent. The analysis of expression and activity of antioxidant enzymes (superoxide dismutase 1 and 2, catalase and glutathione peroxidase) were performed. Direct scavenger action of Cr on superoxide radical and hydrogen peroxide was also investigated. Short-term Cr supplementation attenuated ROS content in both soleus and EDL muscles (by 41 and 33.7%, respectively). Cr supplementation did not change expression and activity of antioxidant enzymes. Basal TBARS content was not altered by Cr supplementation. In cell-free experiments, Cr showed a scavenger effect on superoxide radical in concentrations of 20 and 40 mM, but not on hydrogen peroxide. These results indicate that Cr supplementation decreases ROS content in skeletal muscle possibly due to a direct action of Cr molecule on superoxide radical.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Beta-hydroxy-beta-methylbutyrate (HMB) is a metabolite derived from leucine. The anti-catabolic effect of HMB is well documented but its effect upon skeletal muscle strength and fatigue is still uncertain. In the present study, male Wistar rats were supplemented with HMB (320 mg/kg per day) for 4 weeks. Placebo group received saline solution only. Muscle strength (twitch and tetanic force) and resistance to acute muscle fatigue of the gastrocnemius muscle were evaluated by direct electrical stimulation of the sciatic nerve. The content of ATP and glycogen in red and white portions of gastrocnemius muscle were also evaluated. The effect of HMB on citrate synthase (CS) activity was also investigated. Muscle tetanic force was increased by HMB supplementation. No change was observed in time to peak of contraction and relaxation time. Resistance to acute muscle fatigue during intense contractile activity was also improved after HMB supplementation. Glycogen content was increased in both white (by fivefold) and red (by fourfold) portions of gastrocnemius muscle. HMB supplementation also increased the ATP content in red (by twofold) and white (1.2-fold) portions of gastrocnemius muscle. CS activity was increased by twofold in red portion of gastrocnemius muscle. These results support the proposition that HMB supplementation have marked change in oxidative metabolism improving muscle strength generation and performance during intense contractions.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The effects of a moderate electrical stimulation on superoxide and nitric oxide production by primary cultured skeletal muscle cells were evaluated. The involvement of the main sites of these reactive species production and the relationship between superoxide and nitric oxide production were also examined. Production of superoxide was evaluated by cytochrome c reduction and dihydroethidium oxidation assays. Electrical stimulation increased superoxide production after 1?h incubation. A xanthine oxidase inhibitor caused a partial decrease of superoxide generation and a significant amount of mitochondria-derived superoxide was also observed. Nitric oxide production was assessed by nitrite measurement and by using 4,5-diaminofluorescein diacetate (DAF-2-DA) assay. Using both methods an increased production of nitric oxide was obtained after electrical stimulation, which was also able to induce an increase of iNOS content and NF-?B activation. The participation of superoxide in nitric oxide production was investigated by incubating cells with DAF-2-DA in the presence or absence of electrical stimulation, a superoxide generator system (xanthinexanthine oxidase), a mixture of NOS inhibitors and SOD-PEG. Our data show that the induction of muscle contraction by a moderate electrical stimulation protocol led to an increased nitric oxide production that can be controlled by superoxide generation. The cross talk between these reactive species likely plays a role in exercise-induced maintenance and adaptation by regulating muscular glucose metabolism, force of contraction, fatigue, and antioxidant systems activities. J. Cell. Physiol. 227: 25112518, 2012. (c) 2011 Wiley Periodicals, Inc.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

von Walden F, Casagrande V, Ostlund Farrants AK, Nader GA. Mechanical loading induces the expression of a Pol I regulon at the onset of skeletal muscle hypertrophy. Am J Physiol Cell Physiol 302: C1523-C1530, 2012. First published March 7, 2012; doi:10.1152/ajpcell.00460.2011.-The main goal of the present study was to investigate the regulation of ribosomal DNA (rDNA) gene transcription at the onset of skeletal muscle hypertrophy. Mice were subjected to functional overload of the plantaris by bilateral removal of the synergist muscles. Mechanical loading resulted in muscle hypertrophy with an increase in rRNA content. rDNA transcription, as determined by 45S pre-rRNA abundance, paralleled the increase in rRNA content and was consistent with the onset of the hypertrophic response. Increased transcription and protein expression of c-Myc and its downstream polymerase I (Pol I) regulon (POL1RB, TIF-1A, PAF53, TTF1, TAF1C) was also consistent with the increase in rRNA. Similarly, factors involved in rDNA transcription, such as the upstream binding factor and the Williams syndrome transcription factor, were induced by mechanical loading in a corresponding temporal fashion. Chromatin immunoprecipitation revealed that these factors, together with Pol I, were enriched at the rDNA promoter. This, in addition to an increase in histone H3 lysine 9 acetylation, demonstrates that mechanical loading regulates rRNA synthesis by inducing a gene expression program consisting of a Pol I regulon, together with accessory factors involved in transcription and chromatin remodeling at the rDNA promoter. Altogether, these data indicate that transcriptional and epigenetic mechanisms take place in the regulation of ribosome production at the onset of muscle hypertrophy.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Cornachione AS, Rassier DE. A non-cross-bridge, static tension is present in permeabilized skeletal muscle fibers after active force inhibition or actin extraction. Am J Physiol Cell Physiol 302: C566-C574, 2012. First published November 16, 2011; doi: 10.1152/ajpcell.00355.2011.-When activated muscle fibers are stretched, there is a long-lasting increase in the force. This phenomenon, referred to as "residual force enhancement," has characteristics similar to those of the " static tension," a long-lasting increase in force observed when muscles are stretched in the presence of Ca2+ but in the absence of myosin-actin interaction. Independent studies have suggested that these two phenomena have a common mechanism and are caused either by 1) a Ca2+-induced stiffening of titin or by 2) promoting titin binding to actin. In this study, we performed two sets of experiments in which activated fibers (pCa(2+) 4.5) treated with the myosin inhibitor blebbistatin were stretched from 2.7 to 2.8 mu m at a speed of 40 L-o/s, first, after partial extraction of TnC, which inhibits myosin-actin interactions, or, second, after treatment with gelsolin, which leads to the depletion of thin (actin) filaments. We observed that the static tension, directly related with the residual force enhancement, was not changed after treatments that inhibit myosin-actin interactions or that deplete fibers from troponin C and actin filaments. The results suggest that the residual force enhancement is caused by a stiffening of titin upon muscle activation but not with titin binding to actin. This finding indicates the existence of a Ca2+-regulated, titin-based stiffness in skeletal muscles.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Cunha TF, Moreira JB, Paixao NA, Campos JC, Monteiro AW, Bacurau AV, Bueno CR Jr., Ferreira JC, Brum PC. Aerobic exercise training upregulates skeletal muscle calpain and ubiquitin-proteasome systems in healthy mice. J Appl Physiol 112: 1839-1846, 2012. First published March 29, 2012; doi:10.1152/japplphysiol.00346.2011.-Aerobic exercise training (AET) is an important mechanical stimulus that modulates skeletal muscle protein turnover, leading to structural rearrangement. Since the ubiquitin-proteasome system (UPS) and calpain system are major proteolytic pathways involved in protein turnover, we aimed to investigate the effects of intensity-controlled AET on the skeletal muscle UPS and calpain system and their association to training-induced structural adaptations. Long-lasting effects of AET were studied in C57BL/6J mice after 2 or 8 wk of AET. Plantaris cross-sectional area (CSA) and capillarization were assessed by myosin ATPase staining. mRNA and protein expression levels of main components of the UPS and calpain system were evaluated in plantaris by real-time PCR and Western immunoblotting, respectively. No proteolytic system activation was observed after 2 wk of AET. Eight weeks of AET resulted in improved running capacity, plantaris capillarization, and CSA. Muscle RING finger-1 mRNA expression was increased in 8-wk-trained mice. Accordingly, elevated 26S proteasome activity was observed in the 8-wk-trained group, without accumulation of ubiquitinated or carbonylated proteins. In addition, calpain abundance was increased by 8 wk of AET, whereas no difference was observed in its endogenous inhibitor calpastatin. Taken together, our findings indicate that skeletal muscle enhancements, as evidenced by increased running capacity, plantaris capillarization, and CSA, occurred in spite of the upregulated UPS and calpain system, suggesting that overactivation of skeletal muscle proteolytic systems is not restricted to atrophying states. Our data provide evidence for the contribution of the UPS and calpain system to metabolic turnover of myofibrillar proteins and skeletal muscle adaptations to AET.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Background: Increased plasma concentrations of free fatty acids (FFA) can lead to insulin resistance in skeletal muscle, impaired effects on mitochondrial function, including uncoupling of oxidative phosphorylation and decrease of endogenous antioxidant defenses. Nitric oxide (NO) is a highly diffusible gas that presents a half-life of 5-10 seconds and is involved in several physiological and pathological conditions. The effects of palmitic acid on nitric oxide (NO) production by rat skeletal muscle cells and the possible mechanism involved were investigated. Methods: Primary cultured rat skeletal muscle cells were treated with palmitic acid and NO production was assessed by nitrite measurement (Griess method) and 4,5-diaminofluorescein diacetate (DAF-2-DA) assay. Nuclear factor-kappa B (NF-kappa B) activation was evaluated by electrophoretic mobility shift assay and iNOS protein content by western blotting. Results: Palmitic acid treatment increased nitric oxide production. This effect was abolished by treatment with NOS inhibitors, L-nitro-arginine (LNA) and L-nitro-arginine methyl esther (L-NAME). NF-kappa B activation and iNOS content were increased due to palmitic acid treatment. The participation of superoxide on nitric oxide production was investigated by incubating the cells with DAF-2-DA in the presence or absence of palmitic acid, a superoxide generator system (X-XO), a mixture of NOS inhibitors and SOD-PEG (superoxide dismutase linked to polyethylene glycol). Palmitic acid and X-XO system increased NO production and this effect was abolished when cells were treated with NOS inhibitors and also with SOD-PEG. Conclusions: In summary, palmitic acid stimulates NO production in cultured skeletal muscle cells through production of superoxide, nuclear factor-kappa B activation and increase of iNOS protein content. Copyright (C) 2012 S. Karger AG, Basel

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Abstract: Background: The alkaline version of the single-cell gel (comet) assay is a useful method for quantifying DNA damage. Although some studies on chronic and acute effects of exercise on DNA damage measured by the comet assay have been performed, it is unknown if an aerobic training protocol with intensity, volume, and load clearly defined will improve performance without leading to peripheral blood cell DNA damage. In addition, the effects of overtraining on DNA damage are unknown. Therefore, this study aimed to examine the effects of aerobic training and overtraining on DNA damage in peripheral blood and skeletal muscle cells in Swiss mice. To examine possible changes in these parameters with oxidative stress, we measured reduced glutathione (GSH) levels in total blood, and GSH levels and lipid peroxidation in muscle samples. Results: Performance evaluations (i.e., incremental load and exhaustive tests) showed significant intra and inter-group differences. The overtrained (OTR) group showed a significant increase in the percentage of DNA in the tail compared with the control (C) and trained (TR) groups. GSH levels were significantly lower in the OTR group than in the C and TR groups. The OTR group had significantly higher lipid peroxidation levels compared with the C and TR groups. Conclusions Aerobic and anaerobic performance parameters can be improved in training at maximal lactate steady state during 8 weeks without leading to DNA damage in peripheral blood and skeletal muscle cells or to oxidative stress in skeletal muscle cells. However, overtraining induced by downhill running training sessions is associated with DNA damage in peripheral blood and skeletal muscle cells, and with oxidative stress in skeletal muscle cells and total blood.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVE: To analyze major histocompatibility complex expression in the muscle fibers of juvenile and adult dermatomyositis. METHOD: In total, 28 untreated adult dermatomyositis patients, 28 juvenile dermatomyositis patients (Bohan and Peter's criteria) and a control group consisting of four dystrophic and five Pompe's disease patients were analyzed. Routine histological and immunohistochemical (major histocompatibility complex I and II, StreptoABComplex/HRP, Dakopatts) analyses were performed on serial frozen muscle sections. Inflammatory cells, fiber damage, perifascicular atrophy and increased connective tissue were analyzed relative to the expression of major histocompatibility complexes I and II, which were assessed as negatively or positively stained fibers in 10 fields (200X). RESULTS: The mean ages at disease onset were 42.0 +/- 15.9 and 7.3 +/- 3.4 years in adult and juvenile dermatomyositis, respectively, and the symptom durations before muscle biopsy were similar in both groups. No significant differences were observed regarding gender, ethnicity and frequency of organ involvement, except for higher creatine kinase and lactate dehydrogenase levels in adult dermatomyositis (p<0.050). Moreover, a significantly higher frequency of major histocompatibility complex I (96.4% vs. 50.0%, p<0.001) compared with major histocompatibility complex II expression (14.3% vs. 53.6%, p = 0.004) was observed in juvenile dermatomyositis. Fiber damage (p = 0.006) and increased connective tissue (p<0.001) were significantly higher in adult dermatomyositis compared with the presence of perifascicular atrophy (p<0.001). The results of the histochemical and histological data did not correlate with the demographic data or with the clinical and laboratory features. CONCLUSION: The overexpression of major histocompatibility complex I was an important finding for the diagnosis of both groups, particularly for juvenile dermatomyositis, whereas there was lower levels of expression of major histocompatibility complex II than major histocompatibility complex I. This finding was particularly apparent in juvenile dermatomyositis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Introduction: HMG-CoA reductase inhibitors are the most frequently prescribed drugs for treatment of lipid imbalance, but they have side effects, such as myopathy. Our aim was to assess the effect of simvastatin on the inflammatory process induced by skeletal muscle injury. Methods: Rats were divided into experimental groups [control group, simvastatin (20 mg/kg) group, group treated with simvastatin (20 mg/kg) and subjected to injury, and group subjected to injury only]. Histological analysis and analyses of creatine kinase activity and C-reactive protein were performed. Results: Animals treated with simvastatin exhibited significantly greater morphological and structural skeletal muscle damage in comparison to the control group and injured animals without treatment. Conclusions: Although simvastatin has a small anti-inflammatory effect in the early stage after a muscle strain injury, the overall picture is negative, as simvastatin increases the extent of damage to muscle morphology. Further studies are needed. Muscle Nerve 46: 908-913, 2012

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work investigated the effect of gallium arsenide (GaAs) irradiation (power: 5 mW; intensity: 77.14 mW/cm(2), spot: 0.07 cm(2)) on regenerating skeletal muscles damaged by crotoxin (CTX). Male C57Bl6 mice were divided into six groups (n = 5 each): control, treated only with laser at doses of 1.5 J or 3 J, CTX-injured and, CTX-injured and treated with laser at doses of 1.5 J or 3 J. The injured groups received a CTX injection into the tibialis anterior (TA) muscle. After 3 days, TA muscles were submitted to GaAs irradiation at doses of 1.5 or 3 J (once a day, during 5 days) and were killed on the eighth day. Muscle histological sections were stained with hematoxylin and eosin (H&E) in order to determine the myofiber cross-sectional area (CSA), the previously injured muscle area (PIMA) and the area density of connective tissue. The gene expression of MyoD and myogenin was detected by real-time PCR. GaAs laser at a dose of 3 J, but not 1.5 J, significantly increased the CSA of regenerating myofibers and reduced the PIMA and the area density of intramuscular connective tissue of CTX-injured muscles. MyoD gene expression increased in the injured group treated with GaAs laser at a dose of 1.5 J. The CTX-injured, 3-J GaAs laser-treated, and the CTX-injured and treated with 3-J laser groups showed an increase in myogenin gene expression when compared to the control group. Our results suggest that GaAs laser treatment at a dose of 3 J improves skeletal muscle regeneration by accelerating the recovery of myofiber mass.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

beta(2)-adrenergic receptor (beta(2)-AR) agonists have been used as ergogenics by athletes involved in training for strength and power in order to increase the muscle mass. Even though anabolic effects of beta(2)-AR activation are highly recognized, less is known about the impact of beta(2)-AR in endurance capacity. We presently used mice lacking beta(2)-AR [beta(2)-knockout (beta(2) KO)] to investigate the role of beta(2)-AR on exercise capacity and skeletal muscle metabolism and phenotype. beta(2) KO mice and their wild-type controls (WT) were studied. Exercise tolerance, skeletal muscle fiber typing, capillary-to-fiber ratio, citrate synthase activity and glycogen content were evaluated. When compared with WT, beta 2KO mice displayed increased exercise capacity (61%) associated with higher percentage of oxidative fibers (21% and 129% of increase in soleus and plantaris muscles, respectively) and capillarity (31% and 20% of increase in soleus and plantaris muscles, respectively). In addition, beta 2KO mice presented increased skeletal muscle citrate synthase activity (10%) and succinate dehydrogenase staining. Likewise, glycogen content (53%) and periodic acid-Schiff staining (glycogen staining) were also increased in beta 2KO skeletal muscle. Altogether, these data provide evidence that disruption of beta(2)AR improves oxidative metabolism in skeletal muscle of beta 2KO mice and this is associated with increased exercise capacity.